Research Article
BibTex RIS Cite

Johns modules and quasi-Johns modules

Year 2022, Volume: 51 Issue: 4, 1029 - 1046, 01.08.2022
https://doi.org/10.15672/hujms.902650

Abstract

A right Johns ring is a right Noetherian ring in which every right ideal is a right annihilator. It is known that in a Johns ring RR the Jacobson radical J(R)J(R) of RR is nilpotent and Soc(R)(R) is an essential right ideal of RR. Moreover, every right Johns ring RR is right Kasch, that is, every simple right RR-module can be embedded in RR. For a MRM∈R-Mod we use the concept of MM-annihilator and define a Johns module (resp. quasi-Johns) as a Noetherian module MM such that every submodule is an MM-annihilator. A module MM is called quasi-Johns if any essential submodule of MM is an MM-annihilator and the set of essential submodules of MM satisfies the ascending chain condition. In this paper we extend classical results on Johns rings, as those mentioned above and we also provide new ones. We investigate when a Johns module is Artinian and we give some information about its prime submodules.

References

  • [1] T. Albu and R. Wisbauer, Kasch modules, in: Advances in Ring Theory, pages 1–16. Springer, 1997.
  • [2] I. Assem, A. Skowronski, and D. Simson, Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, volume 65, Cambridge University Press, 2006.
  • [3] J. Beachy, M-injective modules and prime M-ideals, Comm. Algebra, 30 (10), 4649– 4676, 2002.
  • [4] J. Castro Pérez, M. Medina Bárcenas, and J. Ríos Montes, Modules with ascending chain condition on annihilators and Goldie modules, Comm. Algebra, 45 (6), 2334– 2349, 2017.
  • [5] J. Castro Pérez, M. Medina Bárcenas, J. Ríos Montes, and A. Zaldívar Corichi, On semiprime Goldie modules, Comm. Algebra, 44 (11), 4749–4768, 2016.
  • [6] J. Castro Pérez, M. Medina Bárcenas, J. Ríos Montes, and A. Zaldívar Corichi, On the structure of Goldie modules, Comm. Algebra, 46 (7), 3112–3126, 2018.
  • [7] J. Castro Pérez and J. Ríos Montes, FBN modules, Comm. Algebra, 40 (12), 4604– 4616, 2012.
  • [8] J. Castro Pérez and J. Ríos Montes, Prime submodules and local Gabriel correspondence in $\sigma[{M}]$, Comm. Algebra, 40 (1), 213–232, 2012.
  • [9] N.V. Dung, D. Van Huynh, P.F. Smith, and R. Wisbauer, Extending modules, volume 313, CRC Press, 1994.
  • [10] C. Faith and P. Menal, A counter example to a conjecture of Johns, Proc. Amer. Math. Soc. 116 (1), 21–26, 1992.
  • [11] C. Faith and P. Menal, The structure of Johns rings, Proc. Amer. Math. Soc. 120 (4), 1071–1081, 1994.
  • [12] C. Hajarnavis and N. Norton, On dual rings and their modules, J. Algebra, 93 (2), 253–266, 1985.
  • [13] B. Johns, Annihilator conditions in noetherian rings, J. Algebra, 49 (1), 222–224, 1977.
  • [14] M. Medina-Bárcenas and A.Ç. Özcan, Primitive submodules, co-semisimple and regular modules, Taiwanese J. Math. 22 (3), 545–565, 2018.
  • [15] A.Ç. Özcan, A. Harmanci, and P. Smith, Duo modules, Glasg. Math. J. 48 (3), 533– 545, 2006.
  • [16] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso, and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4 (4), 451–466, 2005.
  • [17] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso, and C. Signoret, Semiprime preradicals, Comm. Algebra, 37 (8), 2811–2822, 2009.
  • [18] L. Shen, A note on quasi-johns rings, in: Contemporary Ring Theory 2011, pages 89–96. World Scientific, 2012.
  • [19] R. Wisbauer, Foundations of module and ring theory, volume 3, Reading: Gordon and Breach, 1991.
  • [20] R. Wisbauer, Modules and Algebras: Bimodule Structure on Group Actions and Algebras, volume 81, CRC Press, 1996.
Year 2022, Volume: 51 Issue: 4, 1029 - 1046, 01.08.2022
https://doi.org/10.15672/hujms.902650

Abstract

References

  • [1] T. Albu and R. Wisbauer, Kasch modules, in: Advances in Ring Theory, pages 1–16. Springer, 1997.
  • [2] I. Assem, A. Skowronski, and D. Simson, Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, volume 65, Cambridge University Press, 2006.
  • [3] J. Beachy, M-injective modules and prime M-ideals, Comm. Algebra, 30 (10), 4649– 4676, 2002.
  • [4] J. Castro Pérez, M. Medina Bárcenas, and J. Ríos Montes, Modules with ascending chain condition on annihilators and Goldie modules, Comm. Algebra, 45 (6), 2334– 2349, 2017.
  • [5] J. Castro Pérez, M. Medina Bárcenas, J. Ríos Montes, and A. Zaldívar Corichi, On semiprime Goldie modules, Comm. Algebra, 44 (11), 4749–4768, 2016.
  • [6] J. Castro Pérez, M. Medina Bárcenas, J. Ríos Montes, and A. Zaldívar Corichi, On the structure of Goldie modules, Comm. Algebra, 46 (7), 3112–3126, 2018.
  • [7] J. Castro Pérez and J. Ríos Montes, FBN modules, Comm. Algebra, 40 (12), 4604– 4616, 2012.
  • [8] J. Castro Pérez and J. Ríos Montes, Prime submodules and local Gabriel correspondence in $\sigma[{M}]$, Comm. Algebra, 40 (1), 213–232, 2012.
  • [9] N.V. Dung, D. Van Huynh, P.F. Smith, and R. Wisbauer, Extending modules, volume 313, CRC Press, 1994.
  • [10] C. Faith and P. Menal, A counter example to a conjecture of Johns, Proc. Amer. Math. Soc. 116 (1), 21–26, 1992.
  • [11] C. Faith and P. Menal, The structure of Johns rings, Proc. Amer. Math. Soc. 120 (4), 1071–1081, 1994.
  • [12] C. Hajarnavis and N. Norton, On dual rings and their modules, J. Algebra, 93 (2), 253–266, 1985.
  • [13] B. Johns, Annihilator conditions in noetherian rings, J. Algebra, 49 (1), 222–224, 1977.
  • [14] M. Medina-Bárcenas and A.Ç. Özcan, Primitive submodules, co-semisimple and regular modules, Taiwanese J. Math. 22 (3), 545–565, 2018.
  • [15] A.Ç. Özcan, A. Harmanci, and P. Smith, Duo modules, Glasg. Math. J. 48 (3), 533– 545, 2006.
  • [16] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso, and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4 (4), 451–466, 2005.
  • [17] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso, and C. Signoret, Semiprime preradicals, Comm. Algebra, 37 (8), 2811–2822, 2009.
  • [18] L. Shen, A note on quasi-johns rings, in: Contemporary Ring Theory 2011, pages 89–96. World Scientific, 2012.
  • [19] R. Wisbauer, Foundations of module and ring theory, volume 3, Reading: Gordon and Breach, 1991.
  • [20] R. Wisbauer, Modules and Algebras: Bimodule Structure on Group Actions and Algebras, volume 81, CRC Press, 1996.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Jaime Castro Pérez This is me 0000-0001-7195-9268

Mauricio Gabriel Medına-bárcenas 0000-0002-4911-6982

Publication Date August 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 4

Cite

APA Castro Pérez, J., & Medına-bárcenas, M. G. (2022). Johns modules and quasi-Johns modules. Hacettepe Journal of Mathematics and Statistics, 51(4), 1029-1046. https://doi.org/10.15672/hujms.902650
AMA Castro Pérez J, Medına-bárcenas MG. Johns modules and quasi-Johns modules. Hacettepe Journal of Mathematics and Statistics. August 2022;51(4):1029-1046. doi:10.15672/hujms.902650
Chicago Castro Pérez, Jaime, and Mauricio Gabriel Medına-bárcenas. “Johns Modules and Quasi-Johns Modules”. Hacettepe Journal of Mathematics and Statistics 51, no. 4 (August 2022): 1029-46. https://doi.org/10.15672/hujms.902650.
EndNote Castro Pérez J, Medına-bárcenas MG (August 1, 2022) Johns modules and quasi-Johns modules. Hacettepe Journal of Mathematics and Statistics 51 4 1029–1046.
IEEE J. Castro Pérez and M. G. Medına-bárcenas, “Johns modules and quasi-Johns modules”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, pp. 1029–1046, 2022, doi: 10.15672/hujms.902650.
ISNAD Castro Pérez, Jaime - Medına-bárcenas, Mauricio Gabriel. “Johns Modules and Quasi-Johns Modules”. Hacettepe Journal of Mathematics and Statistics 51/4 (August 2022), 1029-1046. https://doi.org/10.15672/hujms.902650.
JAMA Castro Pérez J, Medına-bárcenas MG. Johns modules and quasi-Johns modules. Hacettepe Journal of Mathematics and Statistics. 2022;51:1029–1046.
MLA Castro Pérez, Jaime and Mauricio Gabriel Medına-bárcenas. “Johns Modules and Quasi-Johns Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, 2022, pp. 1029-46, doi:10.15672/hujms.902650.
Vancouver Castro Pérez J, Medına-bárcenas MG. Johns modules and quasi-Johns modules. Hacettepe Journal of Mathematics and Statistics. 2022;51(4):1029-46.