Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 5, 1472 - 1483, 01.10.2022

Abstract

References

  • [1] N. Balakrishnan and A. Stepanov, On the Fisher information in record data, Statist. Probab. Lett. 76 (5), 537-545, 2006.
  • [2] P.K. Bhattacharya, Estimation of a probability density function and its derivatives, Sankhya A 29 (4), 373-382, 1967.
  • [3] J.F. Bercher, Some properties of generalized Fisher information in the context of nonextensive thermostatistics, Phys. A 392 (15), 3140-3154, 2013.
  • [4] S.G. Bobkov, Moments of the scores, IEEE Trans. Inf. Theory 65 (9), 5294-5301, 2019.
  • [5] T. Duong, M. Wand, J. Chacon and A. Gramacki, Package “ks”, R package version: 1.13.5, 2022.
  • [6] R.A. Fisher, Tests of significance in harmonic analysis, Proc. R. Soc. A 125 (796), 54-59, 1929.
  • [7] S. Golomb, The information generating function of a probability distribution (corresp.), IEEE Trans. Inf. Theory 12 (1), 75-77, 1966.
  • [8] S. Guiasu and C. Reischer, The relative information generating function, Inform. Sci. 35 (3), 235-241, 1985.
  • [9] O. Kharazmi and N. Balakrishnan, Jensen-information generating function and its connections to some well-known information measures, Statist. Probab. Lett. 170, 1-10, 2021.
  • [10] F. Nielsen and R. Nock, On the chi square and higher-order chi distances for approximating f-divergences, IEEE Signal Process. Lett. 21 (1), 10-13, 2014.
  • [11] T. Papaioannou, K. Ferentinos and C. Tsairidis, Some information theoretic ideas useful in statistical inference, Methodol. Comput. Appl. Probab. 9 (2), 307-323, 2007.
  • [12] G. Pau, F. Fuchs, O. Sklyar, M. Boutros and W. Huber, EBImage-an R package for image processing with applications to cellular phenotypes, Bioinformatics 26 (7), 979-981, 2010.
  • [13] P. Sánchez-Moreno, A. Zarzo and J.S. Dehesa, Jensen divergence based on Fisher’s information, J. Phys. A Math. 45 (12), 125305, 2012.
  • [14] C.E. Shannon, A mathematical theory of communication, Bell Labs Tech. J. 27 (3), 379-423, 1948.
  • [15] P. Zegers, Fisher information properties, Entropy 17 (7), 4918-4939, 2015.

Generating function for generalized Fisher information measure and its application to finite mixture models

Year 2022, Volume: 51 Issue: 5, 1472 - 1483, 01.10.2022

Abstract

In this work, we consider generating function for generalized Fisher information measure and use it to develop some results for this measure. Next, we study generalized Fisher information for the mixing parameter vector of a finite mixture density function and develop some results for this model. Further, we propose a Jensen-type divergence measure, namely, Jensen-generalized Fisher information (JGFI), and establish some properties for this measure and its generating function. Finally, for illustrative purposes, we examine a real example from image processing and provide some numerical results in terms of JGFI measure. 

References

  • [1] N. Balakrishnan and A. Stepanov, On the Fisher information in record data, Statist. Probab. Lett. 76 (5), 537-545, 2006.
  • [2] P.K. Bhattacharya, Estimation of a probability density function and its derivatives, Sankhya A 29 (4), 373-382, 1967.
  • [3] J.F. Bercher, Some properties of generalized Fisher information in the context of nonextensive thermostatistics, Phys. A 392 (15), 3140-3154, 2013.
  • [4] S.G. Bobkov, Moments of the scores, IEEE Trans. Inf. Theory 65 (9), 5294-5301, 2019.
  • [5] T. Duong, M. Wand, J. Chacon and A. Gramacki, Package “ks”, R package version: 1.13.5, 2022.
  • [6] R.A. Fisher, Tests of significance in harmonic analysis, Proc. R. Soc. A 125 (796), 54-59, 1929.
  • [7] S. Golomb, The information generating function of a probability distribution (corresp.), IEEE Trans. Inf. Theory 12 (1), 75-77, 1966.
  • [8] S. Guiasu and C. Reischer, The relative information generating function, Inform. Sci. 35 (3), 235-241, 1985.
  • [9] O. Kharazmi and N. Balakrishnan, Jensen-information generating function and its connections to some well-known information measures, Statist. Probab. Lett. 170, 1-10, 2021.
  • [10] F. Nielsen and R. Nock, On the chi square and higher-order chi distances for approximating f-divergences, IEEE Signal Process. Lett. 21 (1), 10-13, 2014.
  • [11] T. Papaioannou, K. Ferentinos and C. Tsairidis, Some information theoretic ideas useful in statistical inference, Methodol. Comput. Appl. Probab. 9 (2), 307-323, 2007.
  • [12] G. Pau, F. Fuchs, O. Sklyar, M. Boutros and W. Huber, EBImage-an R package for image processing with applications to cellular phenotypes, Bioinformatics 26 (7), 979-981, 2010.
  • [13] P. Sánchez-Moreno, A. Zarzo and J.S. Dehesa, Jensen divergence based on Fisher’s information, J. Phys. A Math. 45 (12), 125305, 2012.
  • [14] C.E. Shannon, A mathematical theory of communication, Bell Labs Tech. J. 27 (3), 379-423, 1948.
  • [15] P. Zegers, Fisher information properties, Entropy 17 (7), 4918-4939, 2015.
There are 15 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Omid Kharazmi 0000-0003-4176-9708

Narayanaswamy Balakrishnan 0000-0001-5842-8892

Publication Date October 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 5

Cite

APA Kharazmi, O., & Balakrishnan, N. (2022). Generating function for generalized Fisher information measure and its application to finite mixture models. Hacettepe Journal of Mathematics and Statistics, 51(5), 1472-1483. https://doi.org/10.15672/hujms.1094273
AMA Kharazmi O, Balakrishnan N. Generating function for generalized Fisher information measure and its application to finite mixture models. Hacettepe Journal of Mathematics and Statistics. October 2022;51(5):1472-1483. doi:10.15672/hujms.1094273
Chicago Kharazmi, Omid, and Narayanaswamy Balakrishnan. “Generating Function for Generalized Fisher Information Measure and Its Application to Finite Mixture Models”. Hacettepe Journal of Mathematics and Statistics 51, no. 5 (October 2022): 1472-83. https://doi.org/10.15672/hujms.1094273.
EndNote Kharazmi O, Balakrishnan N (October 1, 2022) Generating function for generalized Fisher information measure and its application to finite mixture models. Hacettepe Journal of Mathematics and Statistics 51 5 1472–1483.
IEEE O. Kharazmi and N. Balakrishnan, “Generating function for generalized Fisher information measure and its application to finite mixture models”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, pp. 1472–1483, 2022, doi: 10.15672/hujms.1094273.
ISNAD Kharazmi, Omid - Balakrishnan, Narayanaswamy. “Generating Function for Generalized Fisher Information Measure and Its Application to Finite Mixture Models”. Hacettepe Journal of Mathematics and Statistics 51/5 (October 2022), 1472-1483. https://doi.org/10.15672/hujms.1094273.
JAMA Kharazmi O, Balakrishnan N. Generating function for generalized Fisher information measure and its application to finite mixture models. Hacettepe Journal of Mathematics and Statistics. 2022;51:1472–1483.
MLA Kharazmi, Omid and Narayanaswamy Balakrishnan. “Generating Function for Generalized Fisher Information Measure and Its Application to Finite Mixture Models”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, 2022, pp. 1472-83, doi:10.15672/hujms.1094273.
Vancouver Kharazmi O, Balakrishnan N. Generating function for generalized Fisher information measure and its application to finite mixture models. Hacettepe Journal of Mathematics and Statistics. 2022;51(5):1472-83.