Research Article
BibTex RIS Cite

A special integer-valued bilinear time series model with applications

Year 2022, Volume: 51 Issue: 5, 1458 - 1471, 01.10.2022

Abstract

The present work proposes a special integer-valued bilinear time series model based on the thinning operators. Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation methods in the time and frequency domains and forecasting are addressed. Finally, the performances of the estimation methods are illustrated through a simulation study and an empirical application to two data sets.

References

  • [1] B. Basrak, R.A. Davis and T. Mikosch, The sample ACF of a simple bilinear process, Stoch. Process. Their Appl. 83 (9), 1-14, 1999.
  • [2] M. Bentarzi and W. Bentarzi, Periodic integer-valued bilinear time series model, Comm. Statist. Theory Methods 46 (3), 1184-1201, 2017.
  • [3] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, 2nd ed., Springer, 1991.
  • [4] R.A. Davis and S.I. Resnick, Limit theory for bilinear processes with heavy-tailed noise, Ann. Appl. Probab. 6 (4), 1191-1210, 1996.
  • [5] P. Doukhan, A. Latour and D. Oraichi, Simple integer-valued bilinear time series model, Adv. in Appl. Probab. 38 (2), 559-578, 2006.
  • [6] F.C. Drost, R. van den Akker and B.J.M. Werker, Note on integer-valued bilinear time series, Statist. Probab. Lett. 38 (8), 559-578, 2008.
  • [7] C.W.J. Granger and A.P. Andersen, An Introduction to Bilinear Time Series Models, Vandenhoeck and Ruprecht, Gottingen, 1978.
  • [8] M. Mohammadpour, H.S. Bakouch and S. Ramzani, An integer-valued bilinear time series model via two random operators, Math. Comput. Model. Dyn. Syst. 25 (4), 429-446, 2019.
  • [9] L. Pascual, J. Romo and E. Ruiz, Bootstrap predictive inference for ARIMA processes, J. Time Series Anal. 25 (4), 449-465, 2004.
  • [10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
  • [11] F.W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability, Ann. Probab. 7 (5), 893-899, 1979.
  • [12] T. Subba Rao, On the theory of bilinear time series models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 43 (2), 244-255, 1981.
  • [13] K.F. Turkman and M.A.A. Turkman, Extremes of bilinear time series models, J. Time Series Anal. 18 (3), 305-319, 1997.
  • [14] P. Whittle, Estimation and information in stationary time series, Ark. Mat. 2 (5), 423-434, 1953.
  • [15] P. Whittle, A Study in the Analysis of Stationary Time Series, Almquist and Wiksell, Stockholm, 1954.
  • [16] Z. Zhang and H. Tong, Some distributional properties of a first-order nonnegative bilinear time series model, J. Appl. Probab. 38 (3), 659-671, 2001.
Year 2022, Volume: 51 Issue: 5, 1458 - 1471, 01.10.2022

Abstract

References

  • [1] B. Basrak, R.A. Davis and T. Mikosch, The sample ACF of a simple bilinear process, Stoch. Process. Their Appl. 83 (9), 1-14, 1999.
  • [2] M. Bentarzi and W. Bentarzi, Periodic integer-valued bilinear time series model, Comm. Statist. Theory Methods 46 (3), 1184-1201, 2017.
  • [3] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, 2nd ed., Springer, 1991.
  • [4] R.A. Davis and S.I. Resnick, Limit theory for bilinear processes with heavy-tailed noise, Ann. Appl. Probab. 6 (4), 1191-1210, 1996.
  • [5] P. Doukhan, A. Latour and D. Oraichi, Simple integer-valued bilinear time series model, Adv. in Appl. Probab. 38 (2), 559-578, 2006.
  • [6] F.C. Drost, R. van den Akker and B.J.M. Werker, Note on integer-valued bilinear time series, Statist. Probab. Lett. 38 (8), 559-578, 2008.
  • [7] C.W.J. Granger and A.P. Andersen, An Introduction to Bilinear Time Series Models, Vandenhoeck and Ruprecht, Gottingen, 1978.
  • [8] M. Mohammadpour, H.S. Bakouch and S. Ramzani, An integer-valued bilinear time series model via two random operators, Math. Comput. Model. Dyn. Syst. 25 (4), 429-446, 2019.
  • [9] L. Pascual, J. Romo and E. Ruiz, Bootstrap predictive inference for ARIMA processes, J. Time Series Anal. 25 (4), 449-465, 2004.
  • [10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
  • [11] F.W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability, Ann. Probab. 7 (5), 893-899, 1979.
  • [12] T. Subba Rao, On the theory of bilinear time series models, J. R. Stat. Soc. Ser. B. Stat. Methodol. 43 (2), 244-255, 1981.
  • [13] K.F. Turkman and M.A.A. Turkman, Extremes of bilinear time series models, J. Time Series Anal. 18 (3), 305-319, 1997.
  • [14] P. Whittle, Estimation and information in stationary time series, Ark. Mat. 2 (5), 423-434, 1953.
  • [15] P. Whittle, A Study in the Analysis of Stationary Time Series, Almquist and Wiksell, Stockholm, 1954.
  • [16] Z. Zhang and H. Tong, Some distributional properties of a first-order nonnegative bilinear time series model, J. Appl. Probab. 38 (3), 659-671, 2001.
There are 16 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Sakineh Ramezani This is me 0000-0002-7285-6436

Mehrnaz Mohammadpour 0000-0002-7285-6436

Publication Date October 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 5

Cite

APA Ramezani, S., & Mohammadpour, M. (2022). A special integer-valued bilinear time series model with applications. Hacettepe Journal of Mathematics and Statistics, 51(5), 1458-1471. https://doi.org/10.15672/hujms.989627
AMA Ramezani S, Mohammadpour M. A special integer-valued bilinear time series model with applications. Hacettepe Journal of Mathematics and Statistics. October 2022;51(5):1458-1471. doi:10.15672/hujms.989627
Chicago Ramezani, Sakineh, and Mehrnaz Mohammadpour. “A Special Integer-Valued Bilinear Time Series Model With Applications”. Hacettepe Journal of Mathematics and Statistics 51, no. 5 (October 2022): 1458-71. https://doi.org/10.15672/hujms.989627.
EndNote Ramezani S, Mohammadpour M (October 1, 2022) A special integer-valued bilinear time series model with applications. Hacettepe Journal of Mathematics and Statistics 51 5 1458–1471.
IEEE S. Ramezani and M. Mohammadpour, “A special integer-valued bilinear time series model with applications”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, pp. 1458–1471, 2022, doi: 10.15672/hujms.989627.
ISNAD Ramezani, Sakineh - Mohammadpour, Mehrnaz. “A Special Integer-Valued Bilinear Time Series Model With Applications”. Hacettepe Journal of Mathematics and Statistics 51/5 (October 2022), 1458-1471. https://doi.org/10.15672/hujms.989627.
JAMA Ramezani S, Mohammadpour M. A special integer-valued bilinear time series model with applications. Hacettepe Journal of Mathematics and Statistics. 2022;51:1458–1471.
MLA Ramezani, Sakineh and Mehrnaz Mohammadpour. “A Special Integer-Valued Bilinear Time Series Model With Applications”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, 2022, pp. 1458-71, doi:10.15672/hujms.989627.
Vancouver Ramezani S, Mohammadpour M. A special integer-valued bilinear time series model with applications. Hacettepe Journal of Mathematics and Statistics. 2022;51(5):1458-71.