Research Article
BibTex RIS Cite

Homological aspects of formal triangular matrix rings

Year 2022, Volume: 51 Issue: 6, 1504 - 1516, 01.12.2022
https://doi.org/10.15672/hujms.1014028

Abstract

Let $T=\biggl(\begin{matrix} A&0\\U&B\end{matrix}\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We first give some computing formulas of projective, injective, flat and $FP$-injective dimensions of special left $T$-modules. Then we establish some formulas of (weak) global dimensions of $T$. It is proven that (1) If $U_{A}$ is flat and $_{B}U$ is projective, $lD(A)\neq lD(B)$, then $lD(T)={\rm max}\{lD(A),lD(B)\}$; (2) If $U_{A}$ and $_{B}U$ are flat, $wD(A)\neq wD(B)$, then $wD(T)={\rm max}\{wD(A),wD(B)\}$.

Supporting Institution

National Natural Science Foundation of China

Project Number

11771202

References

  • [1] J. Asadollahi and S. Salarian, On the vanishing of Ext over formal triangular matrix rings, Forum Math. 18, 951-966, 2006.
  • [2] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
  • [3] R.R. Colby and K.R. Fuller, Equivalence and Duality for Module Categories, Cambridge University Press, Cambridge, 2004.
  • [4] N.Q. Ding and J.L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78, 165-177, 1993.
  • [5] D.J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13, 144-146, 1972.
  • [6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
  • [7] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Monographs Textbooks Pure Appl. Math. 33, Marcel Dekker, Inc. New York and Basel, 1976.
  • [8] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, De Gruyter, Berlin-New York, 2006.
  • [9] E.L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
  • [10] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27, 5507-5525, 1999.
  • [11] A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147, 41-58, 2000.
  • [12] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
  • [13] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York-Heidelberg- Berlin, 1999.
  • [14] P. Loustaunau and J. Shapiro, Homological dimensions in a Morita context with applications to subidealizers and fixed rings, Proc. Amer. Math. Soc. 110, 601-610, 1990.
  • [15] L.X. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224, 106271 (21 pages), 2020.
  • [16] L.X. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Comm. Algebra 48, 5296-5310, 2020.
  • [17] L.X. Mao, The structures of dual modules over formal triangular matrix rings, Publ. Math. Debrecen 97 (3-4), 367-380, 2020.
  • [18] L.X. Mao, Homological dimensions of special modules over formal triangular matrix rings, J. Algebra Appl. 21, 2250146 (14 pages), 2022.
  • [19] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398, 63-110, 2014.
  • [20] J.J. Rotman, An Introduction to Homological Algebra, Second Edition, Springer, New York, 2009.
  • [21] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323-329, 1970.
Year 2022, Volume: 51 Issue: 6, 1504 - 1516, 01.12.2022
https://doi.org/10.15672/hujms.1014028

Abstract

Project Number

11771202

References

  • [1] J. Asadollahi and S. Salarian, On the vanishing of Ext over formal triangular matrix rings, Forum Math. 18, 951-966, 2006.
  • [2] R.R. Colby, Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
  • [3] R.R. Colby and K.R. Fuller, Equivalence and Duality for Module Categories, Cambridge University Press, Cambridge, 2004.
  • [4] N.Q. Ding and J.L. Chen, The flat dimensions of injective modules, Manuscripta Math. 78, 165-177, 1993.
  • [5] D.J. Fieldhouse, Character modules, dimension and purity, Glasgow Math. J. 13, 144-146, 1972.
  • [6] R.M. Fossum, P. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lect. Notes in Math. 456, Springer-Verlag, Berlin, 1975.
  • [7] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Monographs Textbooks Pure Appl. Math. 33, Marcel Dekker, Inc. New York and Basel, 1976.
  • [8] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, De Gruyter, Berlin-New York, 2006.
  • [9] E.L. Green, On the representation theory of rings in matrix form, Pacific J. Math. 100, 123-138, 1982.
  • [10] A. Haghany and K. Varadarajan, Study of formal triangular matrix rings, Comm. Algebra 27, 5507-5525, 1999.
  • [11] A. Haghany and K. Varadarajan, Study of modules over formal triangular matrix rings, J. Pure Appl. Algebra 147, 41-58, 2000.
  • [12] P. Krylov and A. Tuganbaev, Formal Matrices, Springer International Publishing, Switzerland, 2017.
  • [13] T.Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York-Heidelberg- Berlin, 1999.
  • [14] P. Loustaunau and J. Shapiro, Homological dimensions in a Morita context with applications to subidealizers and fixed rings, Proc. Amer. Math. Soc. 110, 601-610, 1990.
  • [15] L.X. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224, 106271 (21 pages), 2020.
  • [16] L.X. Mao, Duality pairs and FP-injective modules over formal triangular matrix rings, Comm. Algebra 48, 5296-5310, 2020.
  • [17] L.X. Mao, The structures of dual modules over formal triangular matrix rings, Publ. Math. Debrecen 97 (3-4), 367-380, 2020.
  • [18] L.X. Mao, Homological dimensions of special modules over formal triangular matrix rings, J. Algebra Appl. 21, 2250146 (14 pages), 2022.
  • [19] C. Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398, 63-110, 2014.
  • [20] J.J. Rotman, An Introduction to Homological Algebra, Second Edition, Springer, New York, 2009.
  • [21] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2, 323-329, 1970.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Lixin Mao 0000-0001-7225-928X

Project Number 11771202
Publication Date December 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 6

Cite

APA Mao, L. (2022). Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics, 51(6), 1504-1516. https://doi.org/10.15672/hujms.1014028
AMA Mao L. Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics. December 2022;51(6):1504-1516. doi:10.15672/hujms.1014028
Chicago Mao, Lixin. “Homological Aspects of Formal Triangular Matrix Rings”. Hacettepe Journal of Mathematics and Statistics 51, no. 6 (December 2022): 1504-16. https://doi.org/10.15672/hujms.1014028.
EndNote Mao L (December 1, 2022) Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics 51 6 1504–1516.
IEEE L. Mao, “Homological aspects of formal triangular matrix rings”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, pp. 1504–1516, 2022, doi: 10.15672/hujms.1014028.
ISNAD Mao, Lixin. “Homological Aspects of Formal Triangular Matrix Rings”. Hacettepe Journal of Mathematics and Statistics 51/6 (December 2022), 1504-1516. https://doi.org/10.15672/hujms.1014028.
JAMA Mao L. Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics. 2022;51:1504–1516.
MLA Mao, Lixin. “Homological Aspects of Formal Triangular Matrix Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 6, 2022, pp. 1504-16, doi:10.15672/hujms.1014028.
Vancouver Mao L. Homological aspects of formal triangular matrix rings. Hacettepe Journal of Mathematics and Statistics. 2022;51(6):1504-16.