Research Article
BibTex RIS Cite
Year 2013, Volume: 42 Issue: 6, 641 - 651, 01.06.2013

Abstract

References

  • Ali, Shakir and Foˇ sner, A., On Jordan (α, β) ∗ -derivations in semiprime ∗-rings, International J. Algebra 4, 99–108, 2010.
  • Breˇ sar M., On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 No.1, 89–93, 1991.
  • Breˇ sar M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104, 1003–1006, 198
  • Breˇ sar M., Jordan mappings of semiprime rings, J. Algebra 127, 218–228, 1989.
  • Breˇ sar M. and Vukman J., On some additive mappings in rings with involution, Aequ. Math. 38, 178–185, 1989.
  • Breˇ sar M. and Vukman J., Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321–322, 1988.
  • Breˇ sar, M. and Zalar, B., On the structure of Jordan ∗-derivation, Colloq. Math. 63, 163– 171, 1992.
  • Cusack J. M., Jordan derivations on rings. Proc. Amer. Math. Soc. 53, 321–324, 1975.
  • Daif, M. N. and Tammam El-Sayiad, M. S., On Jordan and Jordan ∗-generalized derivations in semiprime rings with involution, Int. J. Contemp. Math. Scie. 2, 1487–1492, 2007.
  • Foˇ sner, M. and Iliˇ sevi´ c, D., On Jordan triple derivations and related mappings, Mediterr. J. Math 5, 415–425, 2008.
  • Foˇ sner, M. and Iliˇ sevi´ c, D., On a class of projections on ∗-rings, Comm. Algebra 33, 3293– 3310, 2005.
  • Herstein I. N., Topics in Ring Theory, (Chicago Univ Press, Chicago, 1969).
  • Hongan, M., Rehman, N. and Al-Omary, R. M., Lie ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova, 125, 147–156, 2011.
  • Iliˇ sevi´ c , D., Quadratic functionals on modules over ∗-rings, Studia Sci. Math. Hungar. 42, 95–105, 2005.
  • Liu, C. K. and Shiue, Q. K., Generalized Jordan triple (θ, φ)-derivations of semiprime rings, Taiwanese J. Math. 11, 1397–1406, 2007.
  • Najati, Abbas, Jordan θ-derivation on Lie triple systems, Bull. Korean Math. Soc. 46 No. 3, 435–437, 2009.
  • Najati, Abbas, On generalized Jordan derivations of Lie triple systems, Czechoslovak Mathematical Journal, 60 No. 135, 541–547, 2010.
  • ˇ Semrl, P., Quadratic functionls and Jordan ∗-derivations, Studia Math. 97, 157–165, 1991. Hvala B., Generalized derivations in rings, Comm. Algebra 26, 1149–1166, 1998.
  • Jing W. and Lu S., Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7, 605–613, 2003.
  • Lanski C., Generalized derivations and nth power mappings in rings, Comm Algebra 35, 3660–3672, 2007.
  • Molnar L., On centralizers of an H ∗ -algebra, Publ. Math. Debrecen 46 No. 1-2, 89–95, 1995. Vukman, J., A note on Jordan ∗-derivations in semiprime rings with involution, Int. math. Forum 13, 617–622, 2006.
  • Vukman J., A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11, 367–370, 2007.
  • Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32, 609–614, 199

JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION

Year 2013, Volume: 42 Issue: 6, 641 - 651, 01.06.2013

Abstract

Let R be a 2-torsion free semiprime ∗-ring. The aim of this paper isto show that every Jordan triple (α, β)∗ -derivation on R is a Jordan(α, β)∗ -derivation. Furthermore, every Jordan triple left α∗ -centralizeron R is a Jordan left α∗ -centralizer. Consequently, every generalizedJordan triple (α, β)∗ -derivation on R is a Jordan (α, β)∗ -derivation.

References

  • Ali, Shakir and Foˇ sner, A., On Jordan (α, β) ∗ -derivations in semiprime ∗-rings, International J. Algebra 4, 99–108, 2010.
  • Breˇ sar M., On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J. 33 No.1, 89–93, 1991.
  • Breˇ sar M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104, 1003–1006, 198
  • Breˇ sar M., Jordan mappings of semiprime rings, J. Algebra 127, 218–228, 1989.
  • Breˇ sar M. and Vukman J., On some additive mappings in rings with involution, Aequ. Math. 38, 178–185, 1989.
  • Breˇ sar M. and Vukman J., Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321–322, 1988.
  • Breˇ sar, M. and Zalar, B., On the structure of Jordan ∗-derivation, Colloq. Math. 63, 163– 171, 1992.
  • Cusack J. M., Jordan derivations on rings. Proc. Amer. Math. Soc. 53, 321–324, 1975.
  • Daif, M. N. and Tammam El-Sayiad, M. S., On Jordan and Jordan ∗-generalized derivations in semiprime rings with involution, Int. J. Contemp. Math. Scie. 2, 1487–1492, 2007.
  • Foˇ sner, M. and Iliˇ sevi´ c, D., On Jordan triple derivations and related mappings, Mediterr. J. Math 5, 415–425, 2008.
  • Foˇ sner, M. and Iliˇ sevi´ c, D., On a class of projections on ∗-rings, Comm. Algebra 33, 3293– 3310, 2005.
  • Herstein I. N., Topics in Ring Theory, (Chicago Univ Press, Chicago, 1969).
  • Hongan, M., Rehman, N. and Al-Omary, R. M., Lie ideals and Jordan triple derivations in rings, Rend. Sem. Mat. Univ. Padova, 125, 147–156, 2011.
  • Iliˇ sevi´ c , D., Quadratic functionals on modules over ∗-rings, Studia Sci. Math. Hungar. 42, 95–105, 2005.
  • Liu, C. K. and Shiue, Q. K., Generalized Jordan triple (θ, φ)-derivations of semiprime rings, Taiwanese J. Math. 11, 1397–1406, 2007.
  • Najati, Abbas, Jordan θ-derivation on Lie triple systems, Bull. Korean Math. Soc. 46 No. 3, 435–437, 2009.
  • Najati, Abbas, On generalized Jordan derivations of Lie triple systems, Czechoslovak Mathematical Journal, 60 No. 135, 541–547, 2010.
  • ˇ Semrl, P., Quadratic functionls and Jordan ∗-derivations, Studia Math. 97, 157–165, 1991. Hvala B., Generalized derivations in rings, Comm. Algebra 26, 1149–1166, 1998.
  • Jing W. and Lu S., Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7, 605–613, 2003.
  • Lanski C., Generalized derivations and nth power mappings in rings, Comm Algebra 35, 3660–3672, 2007.
  • Molnar L., On centralizers of an H ∗ -algebra, Publ. Math. Debrecen 46 No. 1-2, 89–95, 1995. Vukman, J., A note on Jordan ∗-derivations in semiprime rings with involution, Int. math. Forum 13, 617–622, 2006.
  • Vukman J., A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11, 367–370, 2007.
  • Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32, 609–614, 199
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nadeem Ur Rehman This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 6

Cite

APA Rehman, N. U. (2013). JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION. Hacettepe Journal of Mathematics and Statistics, 42(6), 641-651.
AMA Rehman NU. JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION. Hacettepe Journal of Mathematics and Statistics. June 2013;42(6):641-651.
Chicago Rehman, Nadeem Ur. “JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION”. Hacettepe Journal of Mathematics and Statistics 42, no. 6 (June 2013): 641-51.
EndNote Rehman NU (June 1, 2013) JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION. Hacettepe Journal of Mathematics and Statistics 42 6 641–651.
IEEE N. U. Rehman, “JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 6, pp. 641–651, 2013.
ISNAD Rehman, Nadeem Ur. “JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION”. Hacettepe Journal of Mathematics and Statistics 42/6 (June 2013), 641-651.
JAMA Rehman NU. JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION. Hacettepe Journal of Mathematics and Statistics. 2013;42:641–651.
MLA Rehman, Nadeem Ur. “JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 6, 2013, pp. 641-5.
Vancouver Rehman NU. JORDAN TRIPLE (α, β) ∗ -DERIVATIONS ON SEMIPRIME RINGS WITH INVOLUTION. Hacettepe Journal of Mathematics and Statistics. 2013;42(6):641-5.