Research Article
BibTex RIS Cite

Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions

Year 2013, Volume: 42 Issue: 4, 339 - 345, 01.04.2013

Abstract

The inverse spectral problem of recovering for a quadratic pencil ofSturm-Liouville operators with the interaction point and the eigenvalueparameter linearly contained in the boundary conditions are studied.The uniqueness theorem for the solution of the inverse problem according to the Weyl function is proved and a constructive procedure forfinding its solution is obtained.

References

  • Albeverio, S., Gesztesy, F., Hoegh-Krohn and R., Holden, H. with an appendix by P. Exner. Solvable Models in Quantum Mechanics (second edition), AMS Chelsea Publ., 2005.
  • Bellman, R., Cooke, K. Differential-Difference Equations, Academic Press, New York, 1963. Binding, P. A., Browne, P. J., Watson, B. A. Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, J. Comp. Appl. Math. 148(1), 147–168, 2002.
  • Browne, P. J., Sleeman, B. D. A uniqueness theorem for inverse eigenparameter dependt Sturm-Liouville problems, Inverse Problems 13(6), 1453–1462, 1997.
  • Buterin, S.A., Yurko, V.A. Inverse spectral problem for pensils of differential operators on a finite interval, Vestnik Bashkir. Univ. 4, 8–12, 2006.
  • Buterin, S. A. On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval, J. Math. Anal. Appl. 335, 739–749, 2007.
  • Buterin, S. A. On half inverse problem for differential pensils with the spectral parameter in boundary conditions, Tamkang J. of Math. 42(3), 355–364, 2011.
  • Chernozhukova, A.Yu. and Freiling, G. A uniqueness theorem for inverse spectral problems depending nonlinearly on the spectral parameter, Inverse Problems in Science and Engineering 17(6), 777–785, 2009.
  • Coddington, E.A., Levinson, N., Theory of ordinary differential equations, McGraw-Hill, New York, USA, 1955.
  • Conway, J. B., Functions oof one complex variable, vol. 1, Springer, New York, NY, USA, 2nd edition, 1995.
  • Freiling, G., Yurko V. A. Inverse Sturm-Liouville Problems and Their Applications, NOVA Science Publishers, New York, 2001.
  • Freiling, G., Yurko V. A. Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems 26(5), 055003, 17 pp, 2010.
  • Gasymov, M. G., Guseinov, G. Sh. Determination of diffusion operator from spectral data, Dokl, Akad. Nauk Azerb. SSR 37(2), 19–23, 1981.
  • Guseinov, I. M., Nabiev, I. M. The inverse spectral problem for pencils of differential operators, Matem. Sbornik 198(11), 47–66, 2007; English Transl., Sbornik: Mathematics 198(11), 1579–1598, 2007.
  • Koyunbakan, H., Panakhov, E. S. Half-inverse problem for diffusion operators on the finite interval, J. Math. Anal. Appl. 326, 1024–1030, 2007.
  • Levitan, B. M. Inverse Sturm-Liouville Problems, Nauka, Mockow, 1984; English Transl., VNU Sci. Press, Utrecht, 1987.
  • Marchenko, V. A. Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977; English Transl., Birkh¨ ouser, 1986.
  • Mennicken, R. and M¨ oller , M. Non-self -adjoint boundary value problems, North-Holland Mathematic Studies 192, Amsterdam, 2003.
  • P¨ oschel, J. and Truowitz, E. Inverse Spectral Theory, Academic Press, New York, 1987.
  • Shieh, C. T. and Yurko, V. A. Inverse nodal and inverse spectral problem for discontinuous bounday value problems, J. Math. Anal. Appl. 374, 266–272, 2008.
  • Shkalikov, A. A. Boundary value problems for ordinary differential equations with a parameter in the boundary conditions, J. Sov. Math. 33, 1311–1342, 1986; English Transl. from Tr. Semin. im. I.G. Petrovskogo 9, 190–229, 1983.
  • Tretter, Ch. Boundary eigenvalue problems with differential equations N η = λP η with λpolynomial boundary conditions, J. DifferentialEquations 170(2), 408–471, 2001.
  • Wang Y. P. The inverse problem for differential pensils with eigenparameter dependent boundary conditions from interior spectral data, Appl. Math. Letters 25(7), 1061–1067, 20
  • Yurko, V. A. An inverse problem for pencils of differential operators, Matem. Sbornik 191, 137–160, 2000; English Tranl., Sbornik: Mathematics 191, 1561–1586, 2000.
Year 2013, Volume: 42 Issue: 4, 339 - 345, 01.04.2013

Abstract

References

  • Albeverio, S., Gesztesy, F., Hoegh-Krohn and R., Holden, H. with an appendix by P. Exner. Solvable Models in Quantum Mechanics (second edition), AMS Chelsea Publ., 2005.
  • Bellman, R., Cooke, K. Differential-Difference Equations, Academic Press, New York, 1963. Binding, P. A., Browne, P. J., Watson, B. A. Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter II, J. Comp. Appl. Math. 148(1), 147–168, 2002.
  • Browne, P. J., Sleeman, B. D. A uniqueness theorem for inverse eigenparameter dependt Sturm-Liouville problems, Inverse Problems 13(6), 1453–1462, 1997.
  • Buterin, S.A., Yurko, V.A. Inverse spectral problem for pensils of differential operators on a finite interval, Vestnik Bashkir. Univ. 4, 8–12, 2006.
  • Buterin, S. A. On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval, J. Math. Anal. Appl. 335, 739–749, 2007.
  • Buterin, S. A. On half inverse problem for differential pensils with the spectral parameter in boundary conditions, Tamkang J. of Math. 42(3), 355–364, 2011.
  • Chernozhukova, A.Yu. and Freiling, G. A uniqueness theorem for inverse spectral problems depending nonlinearly on the spectral parameter, Inverse Problems in Science and Engineering 17(6), 777–785, 2009.
  • Coddington, E.A., Levinson, N., Theory of ordinary differential equations, McGraw-Hill, New York, USA, 1955.
  • Conway, J. B., Functions oof one complex variable, vol. 1, Springer, New York, NY, USA, 2nd edition, 1995.
  • Freiling, G., Yurko V. A. Inverse Sturm-Liouville Problems and Their Applications, NOVA Science Publishers, New York, 2001.
  • Freiling, G., Yurko V. A. Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems 26(5), 055003, 17 pp, 2010.
  • Gasymov, M. G., Guseinov, G. Sh. Determination of diffusion operator from spectral data, Dokl, Akad. Nauk Azerb. SSR 37(2), 19–23, 1981.
  • Guseinov, I. M., Nabiev, I. M. The inverse spectral problem for pencils of differential operators, Matem. Sbornik 198(11), 47–66, 2007; English Transl., Sbornik: Mathematics 198(11), 1579–1598, 2007.
  • Koyunbakan, H., Panakhov, E. S. Half-inverse problem for diffusion operators on the finite interval, J. Math. Anal. Appl. 326, 1024–1030, 2007.
  • Levitan, B. M. Inverse Sturm-Liouville Problems, Nauka, Mockow, 1984; English Transl., VNU Sci. Press, Utrecht, 1987.
  • Marchenko, V. A. Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977; English Transl., Birkh¨ ouser, 1986.
  • Mennicken, R. and M¨ oller , M. Non-self -adjoint boundary value problems, North-Holland Mathematic Studies 192, Amsterdam, 2003.
  • P¨ oschel, J. and Truowitz, E. Inverse Spectral Theory, Academic Press, New York, 1987.
  • Shieh, C. T. and Yurko, V. A. Inverse nodal and inverse spectral problem for discontinuous bounday value problems, J. Math. Anal. Appl. 374, 266–272, 2008.
  • Shkalikov, A. A. Boundary value problems for ordinary differential equations with a parameter in the boundary conditions, J. Sov. Math. 33, 1311–1342, 1986; English Transl. from Tr. Semin. im. I.G. Petrovskogo 9, 190–229, 1983.
  • Tretter, Ch. Boundary eigenvalue problems with differential equations N η = λP η with λpolynomial boundary conditions, J. DifferentialEquations 170(2), 408–471, 2001.
  • Wang Y. P. The inverse problem for differential pensils with eigenparameter dependent boundary conditions from interior spectral data, Appl. Math. Letters 25(7), 1061–1067, 20
  • Yurko, V. A. An inverse problem for pencils of differential operators, Matem. Sbornik 191, 137–160, 2000; English Tranl., Sbornik: Mathematics 191, 1561–1586, 2000.
There are 23 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Manaf Dzh. Manafov This is me

Publication Date April 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 4

Cite

APA Manafov, M. D. (2013). Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions. Hacettepe Journal of Mathematics and Statistics, 42(4), 339-345.
AMA Manafov MD. Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions. Hacettepe Journal of Mathematics and Statistics. April 2013;42(4):339-345.
Chicago Manafov, Manaf Dzh. “Half-Inverse Spectral Problem for Differential Pencils With Interaction-Point and Eigenvalue-Dependent Boundary Conditions”. Hacettepe Journal of Mathematics and Statistics 42, no. 4 (April 2013): 339-45.
EndNote Manafov MD (April 1, 2013) Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions. Hacettepe Journal of Mathematics and Statistics 42 4 339–345.
IEEE M. D. Manafov, “Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 4, pp. 339–345, 2013.
ISNAD Manafov, Manaf Dzh. “Half-Inverse Spectral Problem for Differential Pencils With Interaction-Point and Eigenvalue-Dependent Boundary Conditions”. Hacettepe Journal of Mathematics and Statistics 42/4 (April 2013), 339-345.
JAMA Manafov MD. Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions. Hacettepe Journal of Mathematics and Statistics. 2013;42:339–345.
MLA Manafov, Manaf Dzh. “Half-Inverse Spectral Problem for Differential Pencils With Interaction-Point and Eigenvalue-Dependent Boundary Conditions”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 4, 2013, pp. 339-45.
Vancouver Manafov MD. Half-Inverse Spectral Problem for Differential Pencils with Interaction-Point and Eigenvalue-Dependent Boundary Conditions. Hacettepe Journal of Mathematics and Statistics. 2013;42(4):339-45.