On Edelstein Type Multivalued Random Operators
Year 2013,
Volume: 42 Issue: 3, 223 - 229, 01.03.2013
Akbar Azam
Muhammad Arshad
Pasquale Vetro
Abstract
The purpose of this paper is to provide stochastic versions of severalresults on fixed point theorems in the literature.
References
- Assad N. A. and Kirk, W. A. Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43, 553–562, 1972.
- Azam A. and Arshad, M. Fixed points of sequence of locally contractive multivalued maps, Comp. Math Appl., 57, 96–100, 2008.
- Beg, I. and Abbas, M. Iterative procedure for solution of random operator equations in Banach spaces, J. Math. Anal. Appl., 315 (1), 181–201, 2006.
- Beg, I. and Abbas, M. Random fixed point theorems for a random operator on an unbounded subset of a Banach space, Appl. Math. Lett., 21, 1001–1004, 2008.
- Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82, 641–657, 1976.
- Castaing, C. and Valadier, M. Convex analysis and measurable multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977.
- Ding, X. P. Criteria for the existence of solutions to random integral and differential equations, Appl. Math. Mech., 6, 269–275, 1985.
- Fierro, R., Martinez, C. and Morales, C. H. Fixed point theorems for random lower semicontinuous mappings, Fixed Point Theory Appl., 2009, 7 pages, 2009. Himmelberg, C. J. Measurable relations, Fund. Math., 87, 53–72, 1975. Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67, 261–273, 1979.
- Itoh, S. A random fixed point theorem for a multivalued contraction mapping, Pacific J. Math., 68, 85–90, 1977.
- Kuratowski, K. and Ryll-Nardzewski, C. A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 397–403, 1965.
- Shahzad, N. Random fixed points of multivalued maps in Fr´ echet spaces, Arch. Math. (Brno), 38, 95–100, 2002.
- Shahzad, N. and Hussain, N. Deterministic and random coincidence results for fnonexpansive maps, J. Math. Anal. Appl., 323, 1038–1046, 2006.
- Shatanawi, W. and Mustafa, Z. On coupled random fixed point results in partially ordered metric spaces, Matematicki Vesnik, 64 (2), 139–146, 2012.
On Edelstein Type Multivalued Random Operators
Year 2013,
Volume: 42 Issue: 3, 223 - 229, 01.03.2013
Akbar Azam
Muhammad Arshad
Pasquale Vetro
References
- Assad N. A. and Kirk, W. A. Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43, 553–562, 1972.
- Azam A. and Arshad, M. Fixed points of sequence of locally contractive multivalued maps, Comp. Math Appl., 57, 96–100, 2008.
- Beg, I. and Abbas, M. Iterative procedure for solution of random operator equations in Banach spaces, J. Math. Anal. Appl., 315 (1), 181–201, 2006.
- Beg, I. and Abbas, M. Random fixed point theorems for a random operator on an unbounded subset of a Banach space, Appl. Math. Lett., 21, 1001–1004, 2008.
- Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82, 641–657, 1976.
- Castaing, C. and Valadier, M. Convex analysis and measurable multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977.
- Ding, X. P. Criteria for the existence of solutions to random integral and differential equations, Appl. Math. Mech., 6, 269–275, 1985.
- Fierro, R., Martinez, C. and Morales, C. H. Fixed point theorems for random lower semicontinuous mappings, Fixed Point Theory Appl., 2009, 7 pages, 2009. Himmelberg, C. J. Measurable relations, Fund. Math., 87, 53–72, 1975. Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67, 261–273, 1979.
- Itoh, S. A random fixed point theorem for a multivalued contraction mapping, Pacific J. Math., 68, 85–90, 1977.
- Kuratowski, K. and Ryll-Nardzewski, C. A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 397–403, 1965.
- Shahzad, N. Random fixed points of multivalued maps in Fr´ echet spaces, Arch. Math. (Brno), 38, 95–100, 2002.
- Shahzad, N. and Hussain, N. Deterministic and random coincidence results for fnonexpansive maps, J. Math. Anal. Appl., 323, 1038–1046, 2006.
- Shatanawi, W. and Mustafa, Z. On coupled random fixed point results in partially ordered metric spaces, Matematicki Vesnik, 64 (2), 139–146, 2012.