BibTex RIS Cite

On Edelstein Type Multivalued Random Operators

Year 2013, Volume: 42 Issue: 3, 223 - 229, 01.03.2013

Abstract

The purpose of this paper is to provide stochastic versions of severalresults on fixed point theorems in the literature.

References

  • Assad N. A. and Kirk, W. A. Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43, 553–562, 1972.
  • Azam A. and Arshad, M. Fixed points of sequence of locally contractive multivalued maps, Comp. Math Appl., 57, 96–100, 2008.
  • Beg, I. and Abbas, M. Iterative procedure for solution of random operator equations in Banach spaces, J. Math. Anal. Appl., 315 (1), 181–201, 2006.
  • Beg, I. and Abbas, M. Random fixed point theorems for a random operator on an unbounded subset of a Banach space, Appl. Math. Lett., 21, 1001–1004, 2008.
  • Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82, 641–657, 1976.
  • Castaing, C. and Valadier, M. Convex analysis and measurable multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977.
  • Ding, X. P. Criteria for the existence of solutions to random integral and differential equations, Appl. Math. Mech., 6, 269–275, 1985.
  • Fierro, R., Martinez, C. and Morales, C. H. Fixed point theorems for random lower semicontinuous mappings, Fixed Point Theory Appl., 2009, 7 pages, 2009. Himmelberg, C. J. Measurable relations, Fund. Math., 87, 53–72, 1975. Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67, 261–273, 1979.
  • Itoh, S. A random fixed point theorem for a multivalued contraction mapping, Pacific J. Math., 68, 85–90, 1977.
  • Kuratowski, K. and Ryll-Nardzewski, C. A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 397–403, 1965.
  • Shahzad, N. Random fixed points of multivalued maps in Fr´ echet spaces, Arch. Math. (Brno), 38, 95–100, 2002.
  • Shahzad, N. and Hussain, N. Deterministic and random coincidence results for fnonexpansive maps, J. Math. Anal. Appl., 323, 1038–1046, 2006.
  • Shatanawi, W. and Mustafa, Z. On coupled random fixed point results in partially ordered metric spaces, Matematicki Vesnik, 64 (2), 139–146, 2012.

On Edelstein Type Multivalued Random Operators

Year 2013, Volume: 42 Issue: 3, 223 - 229, 01.03.2013

Abstract

-

References

  • Assad N. A. and Kirk, W. A. Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43, 553–562, 1972.
  • Azam A. and Arshad, M. Fixed points of sequence of locally contractive multivalued maps, Comp. Math Appl., 57, 96–100, 2008.
  • Beg, I. and Abbas, M. Iterative procedure for solution of random operator equations in Banach spaces, J. Math. Anal. Appl., 315 (1), 181–201, 2006.
  • Beg, I. and Abbas, M. Random fixed point theorems for a random operator on an unbounded subset of a Banach space, Appl. Math. Lett., 21, 1001–1004, 2008.
  • Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82, 641–657, 1976.
  • Castaing, C. and Valadier, M. Convex analysis and measurable multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977.
  • Ding, X. P. Criteria for the existence of solutions to random integral and differential equations, Appl. Math. Mech., 6, 269–275, 1985.
  • Fierro, R., Martinez, C. and Morales, C. H. Fixed point theorems for random lower semicontinuous mappings, Fixed Point Theory Appl., 2009, 7 pages, 2009. Himmelberg, C. J. Measurable relations, Fund. Math., 87, 53–72, 1975. Itoh, S. Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67, 261–273, 1979.
  • Itoh, S. A random fixed point theorem for a multivalued contraction mapping, Pacific J. Math., 68, 85–90, 1977.
  • Kuratowski, K. and Ryll-Nardzewski, C. A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 397–403, 1965.
  • Shahzad, N. Random fixed points of multivalued maps in Fr´ echet spaces, Arch. Math. (Brno), 38, 95–100, 2002.
  • Shahzad, N. and Hussain, N. Deterministic and random coincidence results for fnonexpansive maps, J. Math. Anal. Appl., 323, 1038–1046, 2006.
  • Shatanawi, W. and Mustafa, Z. On coupled random fixed point results in partially ordered metric spaces, Matematicki Vesnik, 64 (2), 139–146, 2012.
There are 13 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Akbar Azam This is me

Muhammad Arshad This is me

Pasquale Vetro This is me

Publication Date March 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 3

Cite

APA Azam, A., Arshad, M., & Vetro, P. (2013). On Edelstein Type Multivalued Random Operators. Hacettepe Journal of Mathematics and Statistics, 42(3), 223-229.
AMA Azam A, Arshad M, Vetro P. On Edelstein Type Multivalued Random Operators. Hacettepe Journal of Mathematics and Statistics. March 2013;42(3):223-229.
Chicago Azam, Akbar, Muhammad Arshad, and Pasquale Vetro. “On Edelstein Type Multivalued Random Operators”. Hacettepe Journal of Mathematics and Statistics 42, no. 3 (March 2013): 223-29.
EndNote Azam A, Arshad M, Vetro P (March 1, 2013) On Edelstein Type Multivalued Random Operators. Hacettepe Journal of Mathematics and Statistics 42 3 223–229.
IEEE A. Azam, M. Arshad, and P. Vetro, “On Edelstein Type Multivalued Random Operators”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 3, pp. 223–229, 2013.
ISNAD Azam, Akbar et al. “On Edelstein Type Multivalued Random Operators”. Hacettepe Journal of Mathematics and Statistics 42/3 (March 2013), 223-229.
JAMA Azam A, Arshad M, Vetro P. On Edelstein Type Multivalued Random Operators. Hacettepe Journal of Mathematics and Statistics. 2013;42:223–229.
MLA Azam, Akbar et al. “On Edelstein Type Multivalued Random Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 3, 2013, pp. 223-9.
Vancouver Azam A, Arshad M, Vetro P. On Edelstein Type Multivalued Random Operators. Hacettepe Journal of Mathematics and Statistics. 2013;42(3):223-9.