BibTex RIS Cite

Z3-Graded Differential Calculus on the Quantum Space R3q

Year 2013, Volume: 42 Issue: 2, 101 - 114, 01.02.2013

Abstract

In this work, the Z-graded differential calculus of the extended quantum 3d space is constructed. By using this differential calculus, weobtain the algebra of Cartan-Maurer forms and the corresponding quantum Lie algebra. To give a Z-graded Cartan calculus on the extendedquantum 3d space, the noncommutative differential calculus on thisspace is extended by introducing inner derivations and Lie derivatives.

References

  • Abramov, V. and Kerner, R., E xterior differentials of higher order and their covariant generalization, J. Math. Phys., 41, 5598–5614, 2000.
  • Bazunova, N., Borowiec, A. and Kerner, R., U niversal differential calculus on ternary algebras, Letters in Math. Physics, 67 (3), 195–206, 2004.
  • Celik, S. and Celik, S. A., O n the Differential Geometry of GL q (1|1), J. Phys. A 31, 9685– 9694, 1998.
  • Celik, S., Z 3 -graded differential geometry of quantum plane, J. Phys. A: Math. Gen. 35, 6307–6318, 2002.
  • Celik, S., C artan Calculi on The Quantum Superplane, J. Math. Phys. 47 (8), Art. No: 083501, 2006.
  • Celik, S. A. and Yasar, E., D ifferential Geometry of the Quantum 3-Dimensional Space, Czech. J. Phys. 56, 229–236, 2006.
  • Chryssomalakos, C., Schupp, P. and Zumino, B., I nduced extended calculus on the quantum plane, hep-th /9401141.
  • Dubois-Violette, M. and Kerner, R., U niversal q-differential calculus and q-analog of homological algebra, Acta Math. Univ. Comenianae, LXV (2), 175–188, 1996.
  • El Baz, M., El Hassouni, A., Hassouni, Y., Zakkari, E.H., d 3 = 0, d 2 = 0 Differential Calculi On Certain Noncommutative (Super) Spaces, J. Math. Phys. 45, 2314–2322, 2004.
  • Manin, Yu I., Q uantum groups and noncommutative geometry, Montreal Univ. Preprint, 19 Kerner, R., Z 3 -graded algebras and the cubic root of the Dirac operator, J. Math. Phys., 33 (1), 403–411, 1992.
  • Kerner, R., Z 3 -graded exterior differential calculus and gauge theories of higher order, Lett. in Math. Phys., 36, 441–454, 1996.
  • Kerner, R., T he cubic chessboard, Class. Quantum Gravity, 14 (1A), A203–A225, 1997. Kerner, R. and Niemeyer, B., C ovariant q-differential calculus and its deformations at q N = 1, Lett. in Math. Phys., 45, 161–176, 1998.
  • Schupp, P., Watts, P. and Zumino, B., D ifferential Geometry on Linear Quantum Groups, Lett. Math. Phys. 25 ,139–147, 1992.
  • Schupp, P., Watts, P. and Zumino, B., C artan calculus on quantum Lie algebras, hepth/9312073.
  • Schupp, P., C artan calculus: Differential geometry for quantum groups, hep-th/9408170. Vainerman, L. and Kerner, R., O n special classes of n-algebras, J. Math. Phys., 37 (5), 2553–2565, 1996.
  • Wess, J. and Zumino, B., C ovariant Differential Calculus on the Quantum Hyperplane, Nucl. Phys. B 18 , 302–312, 1990.
  • Woronowicz, S. L., C ompact Matrix Pseudogroups, Commun. Math. Phys. 111, 613–665, 19 Woronowicz, S. L., D ifferential Calculus on Compact Matrix Pseudogroups, Commun. Math. Phys. 122, 125–170, 1989.

Z3-Graded Differential Calculus on the Quantum Space R3q

Year 2013, Volume: 42 Issue: 2, 101 - 114, 01.02.2013

Abstract

-

References

  • Abramov, V. and Kerner, R., E xterior differentials of higher order and their covariant generalization, J. Math. Phys., 41, 5598–5614, 2000.
  • Bazunova, N., Borowiec, A. and Kerner, R., U niversal differential calculus on ternary algebras, Letters in Math. Physics, 67 (3), 195–206, 2004.
  • Celik, S. and Celik, S. A., O n the Differential Geometry of GL q (1|1), J. Phys. A 31, 9685– 9694, 1998.
  • Celik, S., Z 3 -graded differential geometry of quantum plane, J. Phys. A: Math. Gen. 35, 6307–6318, 2002.
  • Celik, S., C artan Calculi on The Quantum Superplane, J. Math. Phys. 47 (8), Art. No: 083501, 2006.
  • Celik, S. A. and Yasar, E., D ifferential Geometry of the Quantum 3-Dimensional Space, Czech. J. Phys. 56, 229–236, 2006.
  • Chryssomalakos, C., Schupp, P. and Zumino, B., I nduced extended calculus on the quantum plane, hep-th /9401141.
  • Dubois-Violette, M. and Kerner, R., U niversal q-differential calculus and q-analog of homological algebra, Acta Math. Univ. Comenianae, LXV (2), 175–188, 1996.
  • El Baz, M., El Hassouni, A., Hassouni, Y., Zakkari, E.H., d 3 = 0, d 2 = 0 Differential Calculi On Certain Noncommutative (Super) Spaces, J. Math. Phys. 45, 2314–2322, 2004.
  • Manin, Yu I., Q uantum groups and noncommutative geometry, Montreal Univ. Preprint, 19 Kerner, R., Z 3 -graded algebras and the cubic root of the Dirac operator, J. Math. Phys., 33 (1), 403–411, 1992.
  • Kerner, R., Z 3 -graded exterior differential calculus and gauge theories of higher order, Lett. in Math. Phys., 36, 441–454, 1996.
  • Kerner, R., T he cubic chessboard, Class. Quantum Gravity, 14 (1A), A203–A225, 1997. Kerner, R. and Niemeyer, B., C ovariant q-differential calculus and its deformations at q N = 1, Lett. in Math. Phys., 45, 161–176, 1998.
  • Schupp, P., Watts, P. and Zumino, B., D ifferential Geometry on Linear Quantum Groups, Lett. Math. Phys. 25 ,139–147, 1992.
  • Schupp, P., Watts, P. and Zumino, B., C artan calculus on quantum Lie algebras, hepth/9312073.
  • Schupp, P., C artan calculus: Differential geometry for quantum groups, hep-th/9408170. Vainerman, L. and Kerner, R., O n special classes of n-algebras, J. Math. Phys., 37 (5), 2553–2565, 1996.
  • Wess, J. and Zumino, B., C ovariant Differential Calculus on the Quantum Hyperplane, Nucl. Phys. B 18 , 302–312, 1990.
  • Woronowicz, S. L., C ompact Matrix Pseudogroups, Commun. Math. Phys. 111, 613–665, 19 Woronowicz, S. L., D ifferential Calculus on Compact Matrix Pseudogroups, Commun. Math. Phys. 122, 125–170, 1989.
There are 17 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Ergün Yasar This is me

Ahmet Bakkaloglu This is me

Publication Date February 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 2

Cite

APA Yasar, E., & Bakkaloglu, A. (2013). Z3-Graded Differential Calculus on the Quantum Space R3q. Hacettepe Journal of Mathematics and Statistics, 42(2), 101-114.
AMA Yasar E, Bakkaloglu A. Z3-Graded Differential Calculus on the Quantum Space R3q. Hacettepe Journal of Mathematics and Statistics. February 2013;42(2):101-114.
Chicago Yasar, Ergün, and Ahmet Bakkaloglu. “Z3-Graded Differential Calculus on the Quantum Space R3q”. Hacettepe Journal of Mathematics and Statistics 42, no. 2 (February 2013): 101-14.
EndNote Yasar E, Bakkaloglu A (February 1, 2013) Z3-Graded Differential Calculus on the Quantum Space R3q. Hacettepe Journal of Mathematics and Statistics 42 2 101–114.
IEEE E. Yasar and A. Bakkaloglu, “Z3-Graded Differential Calculus on the Quantum Space R3q”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 2, pp. 101–114, 2013.
ISNAD Yasar, Ergün - Bakkaloglu, Ahmet. “Z3-Graded Differential Calculus on the Quantum Space R3q”. Hacettepe Journal of Mathematics and Statistics 42/2 (February 2013), 101-114.
JAMA Yasar E, Bakkaloglu A. Z3-Graded Differential Calculus on the Quantum Space R3q. Hacettepe Journal of Mathematics and Statistics. 2013;42:101–114.
MLA Yasar, Ergün and Ahmet Bakkaloglu. “Z3-Graded Differential Calculus on the Quantum Space R3q”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 2, 2013, pp. 101-14.
Vancouver Yasar E, Bakkaloglu A. Z3-Graded Differential Calculus on the Quantum Space R3q. Hacettepe Journal of Mathematics and Statistics. 2013;42(2):101-14.