BibTex RIS Cite

Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT

Year 2012, Volume: 41 Issue: 6, 795 - 812, 01.06.2012

References

  • Aage, C. T. and Salunke, J. N. On common fixed points for contractive type mappings in cone metric spaces, Bull. Math. Anal. Appl. 1 (3), 10–15, 2009.
  • Achari, J. On a pair of random generalized non-linear contractions, Int. J. Math. Math. Sci. 6 (3), 467–475, 1983.
  • Arens, R. F. A topology for spaces of transformations, Annals of Math. 47 (2), 480–495, Banach, S. Sur les op´erations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3, 133–181, 1922.
  • Berinde, V. Approximating fixed points of weak contractions using Picard iteration Nonlin- ear Anal. Forum 9 (1), 43–53, 2004.
  • Berinde, V. Iterative approximation of fixed points (Springer-Verlag, Berlin, 2007).
  • Berinde, V. Approximating common fixed points of noncommuting almost contractions in metric spaces, Fixed Point Theory 11 (2), 179–188, 2010.
  • Berinde, V. General constructive fixed point theorems for ´Ciri´c-type almost contractions in metric spaces, Carpathian J. Math. 24 (2), 10–19, 2008.
  • Bharucha-Reid, A. T. Random integral equations (Academic Press, New York, 1972).
  • Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. (5), 641–657, 1976.
  • Chatterjea, S. K. Fixed point theorems, C. R. Acad. Bulgare Sci. 25, 727–730, 1972.
  • ´Ciri´c, Lj. B. A generalization of BanachÆs contraction principle, Proc. Am. Math. Soc. 45, –273, 1974.
  • Hanˇs, O. Reduzierende zuf¨allige transformationen, Czechoslovak Math. Journal 7 (82), 154– , 1957.
  • Hanˇs, O. Random operator equations, Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, University of California Press, California, part I, 185–202, 1961.
  • Hicks, T. L. and Rhoades, B. E. A Banach type fixed point theorem, Math. Japonica 24 (3), –330, 1979.
  • Itoh, S. Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (2), 261–273, 1979.
  • Ivanov, A. A. Fixed points of metric space mappings (in Russian), Isledovaniia po topologii. II, Akademia Nauk, Moskva, 5–102, 1976.
  • Joshi, M. C. and Bose, R. K. Some Topics in Non Linear Functional Analysis (Wiley Eastern Ltd., New Delhi, 1984).
  • Kannan, R. Some results on fixed points, Bull. Cal. Math. Soc. 60, 71–76, 1968.
  • Lahiri, B. K. and Das, P. Fixed point of Ljubomir ´Ciri´c’s quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen 61 (3-4), 589–594, 2002.
  • Lee, A. C. H. and Padgett, W. J. On random nonlinear contraction, Math. Systems Theory ii, 77–84, 1977.
  • Mukherjee, A. Transformation aleatoives separables theorem all point fixed aleatoire, C. R. Acad. Sci. Paris Ser. A-B 263, 393–395, 1966.
  • Padgett, W. J. On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer. Math. Soc. 38, (1), 1973.
  • Rhoades, B. E. A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226, 257–290, 1977.
  • Rhoades, B. E. Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196, –176, 1974.
  • Rhoades, B. E. Contractive definitions and continuity, Contemp. Math. 72, 233–245, 1988.
  • Rothe, E. Zur Theorie der topologische ordnung und der vektorfelder in Banachschen Rau- men, Composito Math. 5, 177–197, 1937.
  • Rus, I. A. Some fixed point theorems in metric spaces, Rend. Ist. Matem. Univ. di Trieste , 169–172, 1971.
  • Rus, I. A. On the method of successive approximations (in Russian), Revue Roum. Math. Pures Appl. 17, 1433–1437, 1972.
  • Rus, I. A. Principles and applications of the fixed point theory (in Romanian) (Editura Dacia, Cluj-Napoca, 1979).
  • Saha, M. On some random fixed point of mappings over a Banach space with a probability measure, Proc. Nat. Acad. Sci., India 76 (A)III, 219–224, 2006.
  • Saha, M. and Debnath, L. Random fixed point of mappings over a Hilbert space with a probability measure, Adv. Stud. Contemp. Math. 1, 79–84, 2007.
  • Sehgal, V. M. and Waters, C. Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1), 425–429, 1984. ˇSpaˇcek, A. Zuf¨allige Gleichungen, Czechoslovak Mathematical Journal 5 (80), 462–466,
  • Taskovic, M. Osnove teorije fiksne tacke (Fundamental Elements of Fixed Point Theory) (Matematicka biblioteka 50, Beograd, 1986).
  • Yosida, K. Functional analysis (Academic Press, New york, Springer-Verlag, Berlin, 1965).
  • Zamfirescu, T. Fixed point theorems in metric spaces, Arch. Math. (Basel) 23, 292–298,

Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT

Year 2012, Volume: 41 Issue: 6, 795 - 812, 01.06.2012

References

  • Aage, C. T. and Salunke, J. N. On common fixed points for contractive type mappings in cone metric spaces, Bull. Math. Anal. Appl. 1 (3), 10–15, 2009.
  • Achari, J. On a pair of random generalized non-linear contractions, Int. J. Math. Math. Sci. 6 (3), 467–475, 1983.
  • Arens, R. F. A topology for spaces of transformations, Annals of Math. 47 (2), 480–495, Banach, S. Sur les op´erations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3, 133–181, 1922.
  • Berinde, V. Approximating fixed points of weak contractions using Picard iteration Nonlin- ear Anal. Forum 9 (1), 43–53, 2004.
  • Berinde, V. Iterative approximation of fixed points (Springer-Verlag, Berlin, 2007).
  • Berinde, V. Approximating common fixed points of noncommuting almost contractions in metric spaces, Fixed Point Theory 11 (2), 179–188, 2010.
  • Berinde, V. General constructive fixed point theorems for ´Ciri´c-type almost contractions in metric spaces, Carpathian J. Math. 24 (2), 10–19, 2008.
  • Bharucha-Reid, A. T. Random integral equations (Academic Press, New York, 1972).
  • Bharucha-Reid, A. T. Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. (5), 641–657, 1976.
  • Chatterjea, S. K. Fixed point theorems, C. R. Acad. Bulgare Sci. 25, 727–730, 1972.
  • ´Ciri´c, Lj. B. A generalization of BanachÆs contraction principle, Proc. Am. Math. Soc. 45, –273, 1974.
  • Hanˇs, O. Reduzierende zuf¨allige transformationen, Czechoslovak Math. Journal 7 (82), 154– , 1957.
  • Hanˇs, O. Random operator equations, Proceedings of 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, University of California Press, California, part I, 185–202, 1961.
  • Hicks, T. L. and Rhoades, B. E. A Banach type fixed point theorem, Math. Japonica 24 (3), –330, 1979.
  • Itoh, S. Random fixed-point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (2), 261–273, 1979.
  • Ivanov, A. A. Fixed points of metric space mappings (in Russian), Isledovaniia po topologii. II, Akademia Nauk, Moskva, 5–102, 1976.
  • Joshi, M. C. and Bose, R. K. Some Topics in Non Linear Functional Analysis (Wiley Eastern Ltd., New Delhi, 1984).
  • Kannan, R. Some results on fixed points, Bull. Cal. Math. Soc. 60, 71–76, 1968.
  • Lahiri, B. K. and Das, P. Fixed point of Ljubomir ´Ciri´c’s quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen 61 (3-4), 589–594, 2002.
  • Lee, A. C. H. and Padgett, W. J. On random nonlinear contraction, Math. Systems Theory ii, 77–84, 1977.
  • Mukherjee, A. Transformation aleatoives separables theorem all point fixed aleatoire, C. R. Acad. Sci. Paris Ser. A-B 263, 393–395, 1966.
  • Padgett, W. J. On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer. Math. Soc. 38, (1), 1973.
  • Rhoades, B. E. A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226, 257–290, 1977.
  • Rhoades, B. E. Fixed point iterations using infinite matrices, Trans. Amer. Math. Soc. 196, –176, 1974.
  • Rhoades, B. E. Contractive definitions and continuity, Contemp. Math. 72, 233–245, 1988.
  • Rothe, E. Zur Theorie der topologische ordnung und der vektorfelder in Banachschen Rau- men, Composito Math. 5, 177–197, 1937.
  • Rus, I. A. Some fixed point theorems in metric spaces, Rend. Ist. Matem. Univ. di Trieste , 169–172, 1971.
  • Rus, I. A. On the method of successive approximations (in Russian), Revue Roum. Math. Pures Appl. 17, 1433–1437, 1972.
  • Rus, I. A. Principles and applications of the fixed point theory (in Romanian) (Editura Dacia, Cluj-Napoca, 1979).
  • Saha, M. On some random fixed point of mappings over a Banach space with a probability measure, Proc. Nat. Acad. Sci., India 76 (A)III, 219–224, 2006.
  • Saha, M. and Debnath, L. Random fixed point of mappings over a Hilbert space with a probability measure, Adv. Stud. Contemp. Math. 1, 79–84, 2007.
  • Sehgal, V. M. and Waters, C. Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1), 425–429, 1984. ˇSpaˇcek, A. Zuf¨allige Gleichungen, Czechoslovak Mathematical Journal 5 (80), 462–466,
  • Taskovic, M. Osnove teorije fiksne tacke (Fundamental Elements of Fixed Point Theory) (Matematicka biblioteka 50, Beograd, 1986).
  • Yosida, K. Functional analysis (Academic Press, New york, Springer-Verlag, Berlin, 1965).
  • Zamfirescu, T. Fixed point theorems in metric spaces, Arch. Math. (Basel) 23, 292–298,
There are 35 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Mantu Saha This is me

Debashis Dey This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 6

Cite

APA Saha, M., & Dey, D. (2012). Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 41(6), 795-812.
AMA Saha M, Dey D. Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics. June 2012;41(6):795-812.
Chicago Saha, Mantu, and Debashis Dey. “Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41, no. 6 (June 2012): 795-812.
EndNote Saha M, Dey D (June 1, 2012) Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics 41 6 795–812.
IEEE M. Saha and D. Dey, “Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 6, pp. 795–812, 2012.
ISNAD Saha, Mantu - Dey, Debashis. “Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41/6 (June 2012), 795-812.
JAMA Saha M, Dey D. Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41:795–812.
MLA Saha, Mantu and Debashis Dey. “Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 6, 2012, pp. 795-12.
Vancouver Saha M, Dey D. Some Random Fixed Point Theorems for (q,L)-Weak Contractions ABSTRACT | FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41(6):795-812.