Research Article
BibTex RIS Cite

THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS

Year 2012, Volume: 41 Issue: 6, 813 - 822, 01.06.2012

Abstract

In this paper we prove that the group structure of a group object in the category of groupoids lifts to a covering groupoid. We also prove similar results for a R-module object in the category of groupoids

References

  • Bateson, A. Fundamental groups of topological R-modules, Trans. Amer. Math. Soc. 270 (2), –536, 1982.
  • Brown, R. Topology and groupoids, (BookSurge LLC, North Carolina, 2006).
  • Brown, R. and Danesh-Naruie, G. The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc. 19 (2), 237–244, 1975.
  • Brown, R. and Mucuk, O. Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc. 115, 97–110, 1994.
  • Brown, R. and Spencer, C. B. G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79, 296–302, 1976.
  • Chevalley, C. Theory of Lie groups, (Princeton University Press, United States of America, ). Higgins, P. J. Notes on categories and groupoids (Van Nostrand Reinhold Company, Durham, England, 1971).
  • Mucuk, O., Kılı¸carslan, B., S¸ahan, T. and Alemdar, N. Group-groupoid and monodromy groupoid, Topology Appl. 158, 2034–2042, 2011.
  • Mucuk, O. Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid(PhD Thesis, University of Wales, 1993).
  • Mucuk, O. Coverings and ring-groupoids, Geor. Math. J. 5, 475–482, 1998.
  • Mucuk, O. and ¨Ozdemir, M, A monodromy principle for the universal covers of topological rings, Ind. J. Pure and Appl. Math. 31 (12), 1531–1535, 2000.
  • Porter, T. Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30, 373–381, 1987.
  • Rotman, J. J. An Introduction to Algebraic Topology (Graduate Texts in Mathematics 119, Springer-Verlag, New York, 1988).
  • Taylor, R. L. Covering groups of non-connected topological groups, Proc. Amer. Math. Soc. , 753–768, 1954.

THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS

Year 2012, Volume: 41 Issue: 6, 813 - 822, 01.06.2012

Abstract

References

  • Bateson, A. Fundamental groups of topological R-modules, Trans. Amer. Math. Soc. 270 (2), –536, 1982.
  • Brown, R. Topology and groupoids, (BookSurge LLC, North Carolina, 2006).
  • Brown, R. and Danesh-Naruie, G. The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc. 19 (2), 237–244, 1975.
  • Brown, R. and Mucuk, O. Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc. 115, 97–110, 1994.
  • Brown, R. and Spencer, C. B. G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79, 296–302, 1976.
  • Chevalley, C. Theory of Lie groups, (Princeton University Press, United States of America, ). Higgins, P. J. Notes on categories and groupoids (Van Nostrand Reinhold Company, Durham, England, 1971).
  • Mucuk, O., Kılı¸carslan, B., S¸ahan, T. and Alemdar, N. Group-groupoid and monodromy groupoid, Topology Appl. 158, 2034–2042, 2011.
  • Mucuk, O. Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid(PhD Thesis, University of Wales, 1993).
  • Mucuk, O. Coverings and ring-groupoids, Geor. Math. J. 5, 475–482, 1998.
  • Mucuk, O. and ¨Ozdemir, M, A monodromy principle for the universal covers of topological rings, Ind. J. Pure and Appl. Math. 31 (12), 1531–1535, 2000.
  • Porter, T. Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc. 30, 373–381, 1987.
  • Rotman, J. J. An Introduction to Algebraic Topology (Graduate Texts in Mathematics 119, Springer-Verlag, New York, 1988).
  • Taylor, R. L. Covering groups of non-connected topological groups, Proc. Amer. Math. Soc. , 753–768, 1954.
There are 13 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Nazmiye Alemdar This is me

Osman Mucuk This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 6

Cite

APA Alemdar, N., & Mucuk, O. (2012). THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS. Hacettepe Journal of Mathematics and Statistics, 41(6), 813-822.
AMA Alemdar N, Mucuk O. THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS. Hacettepe Journal of Mathematics and Statistics. June 2012;41(6):813-822.
Chicago Alemdar, Nazmiye, and Osman Mucuk. “THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS”. Hacettepe Journal of Mathematics and Statistics 41, no. 6 (June 2012): 813-22.
EndNote Alemdar N, Mucuk O (June 1, 2012) THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS. Hacettepe Journal of Mathematics and Statistics 41 6 813–822.
IEEE N. Alemdar and O. Mucuk, “THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 6, pp. 813–822, 2012.
ISNAD Alemdar, Nazmiye - Mucuk, Osman. “THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS”. Hacettepe Journal of Mathematics and Statistics 41/6 (June 2012), 813-822.
JAMA Alemdar N, Mucuk O. THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS. Hacettepe Journal of Mathematics and Statistics. 2012;41:813–822.
MLA Alemdar, Nazmiye and Osman Mucuk. “THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 6, 2012, pp. 813-22.
Vancouver Alemdar N, Mucuk O. THE LIFTINGS OF R-MODULES TO COVERING GROUPOIDS. Hacettepe Journal of Mathematics and Statistics. 2012;41(6):813-22.