Research Article
BibTex RIS Cite

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION

Year 2012, Volume: 41 Issue: 6, 867 - 874, 01.06.2012

Abstract

References

  • Bozkurt, F., Ozturk, I. and Ozen, S. The global behavior of the difference equation, Stud. Univ. Babes-Bolyai Math. 54 (2), 3–12, 2009.
  • Cinar, C. On the positive solutions of the difference equation xn+1= +xnxn−1 , Appl. Math. Comp. 150 (1), 21–24, 2004.
  • Cinar, C., Karatas, R. and Yal¸cinkaya, I. On solutions of the difference equation xn+1= xn−3 −1+xnxn−1xn−2xn−3 , Math. Bohem. 132 (3), 257–261, 2007.
  • Clark, C. W., A delayed recruitment of a population dynamics with an application to baleen whale populations, J. Math. Biol. 3, 381–391, 1976.
  • Chen, D., Li, X. and Wang, Y. Dynamics for nonlinear difference equation xn+1= αxn−k β+γx n−l Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. On the difference equation xn+1= , Adv. Differ. Equ. Article ID 82579, 10 pages, 2006.
  • Elabbasy, E. M. and Elsayed, E. M. On the global attractivity of difference equation of higher n−dxn−1 order, Carpathian J. Math. 24 (2), 45–53, 2008.
  • Elsayed, E. M. Expressions of solutions for a class of differential equations, An. S¸tiint. Univ. ”Ovidius” Constanta. Ser. Mat. 18 (1), 99–114, 2010.
  • Feuer, J. Periodic solutions of the Lyness max equation, J. Math. Anal. Appl. 288 (1), –160, 2003.
  • Feuer, J. Two classes of piecewise-linear difference equations with eventual periodicity three, J. Math. Anal. Appl. 332 (1), 564–569, 2007.
  • Kocic, V. L. and Ladas, G. Global behavior of nonlinear difference equations of higher order with applications(Kluwer Academic Publishers, Dordrecht, 1993).
  • Kulenovic, M. R. S. and Ladas, G. Dynamics of second order rational difference equations with open problems and conjectures(Chapman and Hall, CRC Press, 2001).
  • Ozturk, I., Bozkurt, F. and Ozen, S., On the difference equation yn+1=α+βe−yn, Appl. γ+yn−1 Math. Comput. 181 (2), 1387–1393, 2006.
  • Li, X. and Zhu, D. Global asymptotic stability in a rational equation, J. Difference Equ. Appl. 9, 833–839, 2003.
  • Li, X. Existence of solutions with a single semicycle for a general second-order rational difference equation, J. Math. Anal. Appl. 334 (1), 528–533, 2007.
  • Stevi´c, S. A note on periodic character of a higher order difference equation, Rostocker Math. Kolloq. 61, 21–30, 2006.
  • Stevi´c, S. On a class of higher-order difference equations, Chaos Solitons and Fractals 42, –145, 2009.
  • Yal¸cinkaya, I., Iricanin, B. D. and Cinar, C. On a max-type difference equation, Discrete Dyn. Nat. Soc. Article ID 47264, 10 pages, 2007.
  • Yal¸cinkaya, I. On the difference equation xn+1= α +xn−2, Fasc. Math. 42, 133–139, 2009. xk n

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION

Year 2012, Volume: 41 Issue: 6, 867 - 874, 01.06.2012

Abstract

In this paper, we investigate the stability of the following difference
equation
xn+1 =
ax4
n + bxnx
3
n−1 + cx2
nx
2
n−1 + dx3
nxn−1 + ex4
n−1
Ax4
n + Bxnx
3
n−1 + Cx2
nx
2
n−1 + Dx3
nxn−1 + Ex4
n−1
,
n = 0, 1, . . . ,
where the parameters a, b, c, d, e, A, B, C, D, E are positive real
numbers and the initial values x0, x−1 are arbitrary positive numbers. 

References

  • Bozkurt, F., Ozturk, I. and Ozen, S. The global behavior of the difference equation, Stud. Univ. Babes-Bolyai Math. 54 (2), 3–12, 2009.
  • Cinar, C. On the positive solutions of the difference equation xn+1= +xnxn−1 , Appl. Math. Comp. 150 (1), 21–24, 2004.
  • Cinar, C., Karatas, R. and Yal¸cinkaya, I. On solutions of the difference equation xn+1= xn−3 −1+xnxn−1xn−2xn−3 , Math. Bohem. 132 (3), 257–261, 2007.
  • Clark, C. W., A delayed recruitment of a population dynamics with an application to baleen whale populations, J. Math. Biol. 3, 381–391, 1976.
  • Chen, D., Li, X. and Wang, Y. Dynamics for nonlinear difference equation xn+1= αxn−k β+γx n−l Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. On the difference equation xn+1= , Adv. Differ. Equ. Article ID 82579, 10 pages, 2006.
  • Elabbasy, E. M. and Elsayed, E. M. On the global attractivity of difference equation of higher n−dxn−1 order, Carpathian J. Math. 24 (2), 45–53, 2008.
  • Elsayed, E. M. Expressions of solutions for a class of differential equations, An. S¸tiint. Univ. ”Ovidius” Constanta. Ser. Mat. 18 (1), 99–114, 2010.
  • Feuer, J. Periodic solutions of the Lyness max equation, J. Math. Anal. Appl. 288 (1), –160, 2003.
  • Feuer, J. Two classes of piecewise-linear difference equations with eventual periodicity three, J. Math. Anal. Appl. 332 (1), 564–569, 2007.
  • Kocic, V. L. and Ladas, G. Global behavior of nonlinear difference equations of higher order with applications(Kluwer Academic Publishers, Dordrecht, 1993).
  • Kulenovic, M. R. S. and Ladas, G. Dynamics of second order rational difference equations with open problems and conjectures(Chapman and Hall, CRC Press, 2001).
  • Ozturk, I., Bozkurt, F. and Ozen, S., On the difference equation yn+1=α+βe−yn, Appl. γ+yn−1 Math. Comput. 181 (2), 1387–1393, 2006.
  • Li, X. and Zhu, D. Global asymptotic stability in a rational equation, J. Difference Equ. Appl. 9, 833–839, 2003.
  • Li, X. Existence of solutions with a single semicycle for a general second-order rational difference equation, J. Math. Anal. Appl. 334 (1), 528–533, 2007.
  • Stevi´c, S. A note on periodic character of a higher order difference equation, Rostocker Math. Kolloq. 61, 21–30, 2006.
  • Stevi´c, S. On a class of higher-order difference equations, Chaos Solitons and Fractals 42, –145, 2009.
  • Yal¸cinkaya, I., Iricanin, B. D. and Cinar, C. On a max-type difference equation, Discrete Dyn. Nat. Soc. Article ID 47264, 10 pages, 2007.
  • Yal¸cinkaya, I. On the difference equation xn+1= α +xn−2, Fasc. Math. 42, 133–139, 2009. xk n
There are 18 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Nouressadat Touafek This is me

Publication Date June 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 6

Cite

APA Touafek, N. (2012). ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION. Hacettepe Journal of Mathematics and Statistics, 41(6), 867-874.
AMA Touafek N. ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION. Hacettepe Journal of Mathematics and Statistics. June 2012;41(6):867-874.
Chicago Touafek, Nouressadat. “ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION”. Hacettepe Journal of Mathematics and Statistics 41, no. 6 (June 2012): 867-74.
EndNote Touafek N (June 1, 2012) ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION. Hacettepe Journal of Mathematics and Statistics 41 6 867–874.
IEEE N. Touafek, “ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 6, pp. 867–874, 2012.
ISNAD Touafek, Nouressadat. “ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION”. Hacettepe Journal of Mathematics and Statistics 41/6 (June 2012), 867-874.
JAMA Touafek N. ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION. Hacettepe Journal of Mathematics and Statistics. 2012;41:867–874.
MLA Touafek, Nouressadat. “ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 6, 2012, pp. 867-74.
Vancouver Touafek N. ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION. Hacettepe Journal of Mathematics and Statistics. 2012;41(6):867-74.