Research Article
BibTex RIS Cite

ON THE “WEIGHTED” SCHRODINGER ¨ OPERATOR WITH POINT δ-INTERACTIONS

Year 2012, Volume: 41 Issue: 5, 743 - 749, 01.05.2012

Abstract

References

  • Albeverio, G., Gesztesy, F., Hoegh-Krohn, R. and Holden,H. Solvable Models in Quantum Mechanics (2nd edition) (AMS Chelsa Publishing, Providence, RI, 2005).
  • Berezin, F. A. and Faddeev, L. D. Remarks on Schr¨odinger equation with singular potential, Dokl. Akad. Nauk. 137 (7), 1011–1014, 1961 (in Russian).
  • Birman, M. Sh. and Solomyak, M. Z. Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel Pulb.Co., Dordrecht, Holland, 1987).
  • Eastham, M. S. P. The Spectral Theory of Periodic Differential Equations (Scottish Aca- demic Press, Edinburgh, London, 1973).
  • Hryniv, R. O. Analyticity and uniform stability in the inverse spectral problem for impedanse Sturm-Lioville operators, Carpatian Mathematical Publications 2 (1), 35–58, 2010.
  • Kato, T. Theory of Perturbation of Linear Operators (M.:Mir, 1972).
  • Knyazev, P. N. On the use of minimax properties in perturbation theory, Russian Mathe- matics (˙Izvestiya VUZ. Matematika) 2, 94–100, 1959.
  • Korotyaev, E. Inverse problem for periodic “weighted” operators, J. Functional Analysis , 188–218, 2000.
  • Minlos, R. A. and Faddeev, L. D. On pointwise interaction for a system of three particles in Quantum Mechannics, Dokl. Akad. Nauk. 141 (6), 1335–1338, 1961 (in Russian).
  • Naimark, M. A. Linear Differential Operators (Frederick Ungar Publ. Co., New York, 1968).
  • Titchmarsh, E. C. Eigenfunction Expansions Associated with Second Order Differential Equations, Part II. 2nd Ed. (Clarendon Press, Oxford, 1962).
  • Vladimirov, V. S. Generalized Functions in Mathematical Physics (M.: Nauka, 1976) (in Russian).

On the "Weighted" Schrödinger Operator with Point d-Interactions

Year 2012, Volume: 41 Issue: 5, 743 - 749, 01.05.2012

Abstract

The number of negative eigenvalues of the “weighted” Schr¨odinger operator with point δ-interactions are found and by means of the Floquet theory, stability or instability of the solutions to periodic “weighted” equations with δ-interactions are determined.

References

  • Albeverio, G., Gesztesy, F., Hoegh-Krohn, R. and Holden,H. Solvable Models in Quantum Mechanics (2nd edition) (AMS Chelsa Publishing, Providence, RI, 2005).
  • Berezin, F. A. and Faddeev, L. D. Remarks on Schr¨odinger equation with singular potential, Dokl. Akad. Nauk. 137 (7), 1011–1014, 1961 (in Russian).
  • Birman, M. Sh. and Solomyak, M. Z. Spectral Theory of Self-adjoint Operators in Hilbert Space (D. Reidel Pulb.Co., Dordrecht, Holland, 1987).
  • Eastham, M. S. P. The Spectral Theory of Periodic Differential Equations (Scottish Aca- demic Press, Edinburgh, London, 1973).
  • Hryniv, R. O. Analyticity and uniform stability in the inverse spectral problem for impedanse Sturm-Lioville operators, Carpatian Mathematical Publications 2 (1), 35–58, 2010.
  • Kato, T. Theory of Perturbation of Linear Operators (M.:Mir, 1972).
  • Knyazev, P. N. On the use of minimax properties in perturbation theory, Russian Mathe- matics (˙Izvestiya VUZ. Matematika) 2, 94–100, 1959.
  • Korotyaev, E. Inverse problem for periodic “weighted” operators, J. Functional Analysis , 188–218, 2000.
  • Minlos, R. A. and Faddeev, L. D. On pointwise interaction for a system of three particles in Quantum Mechannics, Dokl. Akad. Nauk. 141 (6), 1335–1338, 1961 (in Russian).
  • Naimark, M. A. Linear Differential Operators (Frederick Ungar Publ. Co., New York, 1968).
  • Titchmarsh, E. C. Eigenfunction Expansions Associated with Second Order Differential Equations, Part II. 2nd Ed. (Clarendon Press, Oxford, 1962).
  • Vladimirov, V. S. Generalized Functions in Mathematical Physics (M.: Nauka, 1976) (in Russian).
There are 12 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Manaf Dzh. Manafov This is me

Publication Date May 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 5

Cite

APA Manafov, M. D. (2012). On the "Weighted" Schrödinger Operator with Point d-Interactions. Hacettepe Journal of Mathematics and Statistics, 41(5), 743-749.
AMA Manafov MD. On the "Weighted" Schrödinger Operator with Point d-Interactions. Hacettepe Journal of Mathematics and Statistics. May 2012;41(5):743-749.
Chicago Manafov, Manaf Dzh. “On the ‘Weighted’ Schrödinger Operator With Point D-Interactions”. Hacettepe Journal of Mathematics and Statistics 41, no. 5 (May 2012): 743-49.
EndNote Manafov MD (May 1, 2012) On the "Weighted" Schrödinger Operator with Point d-Interactions. Hacettepe Journal of Mathematics and Statistics 41 5 743–749.
IEEE M. D. Manafov, “On the ‘Weighted’ Schrödinger Operator with Point d-Interactions”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 5, pp. 743–749, 2012.
ISNAD Manafov, Manaf Dzh. “On the ‘Weighted’ Schrödinger Operator With Point D-Interactions”. Hacettepe Journal of Mathematics and Statistics 41/5 (May 2012), 743-749.
JAMA Manafov MD. On the "Weighted" Schrödinger Operator with Point d-Interactions. Hacettepe Journal of Mathematics and Statistics. 2012;41:743–749.
MLA Manafov, Manaf Dzh. “On the ‘Weighted’ Schrödinger Operator With Point D-Interactions”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 5, 2012, pp. 743-9.
Vancouver Manafov MD. On the "Weighted" Schrödinger Operator with Point d-Interactions. Hacettepe Journal of Mathematics and Statistics. 2012;41(5):743-9.