Bhattacharya, P. and Mukherjee, N. P. Fuzzy relations and fuzzy groups, Information Sci- ences 36, 267–282, 1985.
Dudek, W. A., Shabir, M. and Anjum, R. Characterizations of hemirings by their h-ideals, Comput. Math. Appl. 59, 3167–3179, 2010.
Dutta, T. K. and Sardar, S. K. On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math. 26, 203–213, 2002.
Golan, J. S. Semirings and their Applications (Kluwer Academic Publishers, Netherlands, ). Henriksen, M. Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6, , 1958.
Iizuka, K. On the Jacobson radical of semiring, Tohoku Math. J. 11 (2), 409–421, 1959.
Jun, Y. B. and Lee, C. Y. Fuzzy Γ-rings, Pusom Kyongnam Math. J. 8 (2), 63–170, 1992.
Jun, Y. B., ¨Ozt¨urk, M. A. and Song, S. Z. On Fuzzy h-ideals in hemiring, Information Sci- ences 162, 211–226, 2004.
La Torre, D. R. On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12, 219–226, Ma, X. and Zhan, J. Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Comput and Applications 19, 477–485, 2010.
Ma, X. and Zhan, J. Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings, Infor- mation Sciences 179, 1249–1268, 2009.
Rao, M. M. K. Γ-semirings-1, Southeast Asian Bull. Math. 19, 49–54, 1995.
Sardar, S. K. and Mandal, D. Fuzzy h-ideals in Γ-hemiring, Int. J. Pure. Appl. Math. 56 (3), –450, 2009.
Sardar, S. K. and Mandal, D. Prime (semiprime) fuzzy h-ideals in Γ-hemiring, Int. J. Com- put. Math. Sci. 5 (3), 160–164, 2011.
Sardar, S. K. and Mandal, D. On fuzzy h-ideals in h-regular Γ-hemirings and h-duo Γ- hemirings, Gen. Math. Notes. 2 (1), 64–85, 2011.
Zadeh, L. A. Fuzzy sets, Information and Control 8, 338–353, 1965.
Zhan, J. and Dudek, W. A. Fuzzy h-ideals of hemirings, Information Sciences 177, 876–886,
Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings
Year 2012,
Volume: 41 Issue: 4, 449 - 465, 01.04.2012
Bhattacharya, P. and Mukherjee, N. P. Fuzzy relations and fuzzy groups, Information Sci- ences 36, 267–282, 1985.
Dudek, W. A., Shabir, M. and Anjum, R. Characterizations of hemirings by their h-ideals, Comput. Math. Appl. 59, 3167–3179, 2010.
Dutta, T. K. and Sardar, S. K. On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math. 26, 203–213, 2002.
Golan, J. S. Semirings and their Applications (Kluwer Academic Publishers, Netherlands, ). Henriksen, M. Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6, , 1958.
Iizuka, K. On the Jacobson radical of semiring, Tohoku Math. J. 11 (2), 409–421, 1959.
Jun, Y. B. and Lee, C. Y. Fuzzy Γ-rings, Pusom Kyongnam Math. J. 8 (2), 63–170, 1992.
Jun, Y. B., ¨Ozt¨urk, M. A. and Song, S. Z. On Fuzzy h-ideals in hemiring, Information Sci- ences 162, 211–226, 2004.
La Torre, D. R. On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12, 219–226, Ma, X. and Zhan, J. Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Comput and Applications 19, 477–485, 2010.
Ma, X. and Zhan, J. Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings, Infor- mation Sciences 179, 1249–1268, 2009.
Rao, M. M. K. Γ-semirings-1, Southeast Asian Bull. Math. 19, 49–54, 1995.
Sardar, S. K. and Mandal, D. Fuzzy h-ideals in Γ-hemiring, Int. J. Pure. Appl. Math. 56 (3), –450, 2009.
Sardar, S. K. and Mandal, D. Prime (semiprime) fuzzy h-ideals in Γ-hemiring, Int. J. Com- put. Math. Sci. 5 (3), 160–164, 2011.
Sardar, S. K. and Mandal, D. On fuzzy h-ideals in h-regular Γ-hemirings and h-duo Γ- hemirings, Gen. Math. Notes. 2 (1), 64–85, 2011.
Zadeh, L. A. Fuzzy sets, Information and Control 8, 338–353, 1965.
Zhan, J. and Dudek, W. A. Fuzzy h-ideals of hemirings, Information Sciences 177, 876–886,
M, D. (2012). Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics, 41(4), 449-465.
AMA
M D. Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics. April 2012;41(4):449-465.
Chicago
M, Debabrata. “Correspondence Between Fuzzy H-Ideals of a G-Hemiring and Fuzzy H-Ideals of Its Operator Hemirings”. Hacettepe Journal of Mathematics and Statistics 41, no. 4 (April 2012): 449-65.
EndNote
M D (April 1, 2012) Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics 41 4 449–465.
IEEE
D. M, “Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, pp. 449–465, 2012.
ISNAD
M, Debabrata. “Correspondence Between Fuzzy H-Ideals of a G-Hemiring and Fuzzy H-Ideals of Its Operator Hemirings”. Hacettepe Journal of Mathematics and Statistics 41/4 (April 2012), 449-465.
JAMA
M D. Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics. 2012;41:449–465.
MLA
M, Debabrata. “Correspondence Between Fuzzy H-Ideals of a G-Hemiring and Fuzzy H-Ideals of Its Operator Hemirings”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, 2012, pp. 449-65.
Vancouver
M D. Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics. 2012;41(4):449-65.