Research Article
BibTex RIS Cite

Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings

Year 2012, Volume: 41 Issue: 4, 449 - 465, 01.04.2012

References

  • Bhattacharya, P. and Mukherjee, N. P. Fuzzy relations and fuzzy groups, Information Sci- ences 36, 267–282, 1985.
  • Dudek, W. A., Shabir, M. and Anjum, R. Characterizations of hemirings by their h-ideals, Comput. Math. Appl. 59, 3167–3179, 2010.
  • Dutta, T. K. and Sardar, S. K. On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math. 26, 203–213, 2002.
  • Golan, J. S. Semirings and their Applications (Kluwer Academic Publishers, Netherlands, ). Henriksen, M. Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6, , 1958.
  • Iizuka, K. On the Jacobson radical of semiring, Tohoku Math. J. 11 (2), 409–421, 1959.
  • Jun, Y. B. and Lee, C. Y. Fuzzy Γ-rings, Pusom Kyongnam Math. J. 8 (2), 63–170, 1992.
  • Jun, Y. B., ¨Ozt¨urk, M. A. and Song, S. Z. On Fuzzy h-ideals in hemiring, Information Sci- ences 162, 211–226, 2004.
  • La Torre, D. R. On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12, 219–226, Ma, X. and Zhan, J. Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Comput and Applications 19, 477–485, 2010.
  • Ma, X. and Zhan, J. Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings, Infor- mation Sciences 179, 1249–1268, 2009.
  • Rao, M. M. K. Γ-semirings-1, Southeast Asian Bull. Math. 19, 49–54, 1995.
  • Sardar, S. K. and Mandal, D. Fuzzy h-ideals in Γ-hemiring, Int. J. Pure. Appl. Math. 56 (3), –450, 2009.
  • Sardar, S. K. and Mandal, D. Prime (semiprime) fuzzy h-ideals in Γ-hemiring, Int. J. Com- put. Math. Sci. 5 (3), 160–164, 2011.
  • Sardar, S. K. and Mandal, D. On fuzzy h-ideals in h-regular Γ-hemirings and h-duo Γ- hemirings, Gen. Math. Notes. 2 (1), 64–85, 2011.
  • Zadeh, L. A. Fuzzy sets, Information and Control 8, 338–353, 1965.
  • Zhan, J. and Dudek, W. A. Fuzzy h-ideals of hemirings, Information Sciences 177, 876–886,

Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings

Year 2012, Volume: 41 Issue: 4, 449 - 465, 01.04.2012

References

  • Bhattacharya, P. and Mukherjee, N. P. Fuzzy relations and fuzzy groups, Information Sci- ences 36, 267–282, 1985.
  • Dudek, W. A., Shabir, M. and Anjum, R. Characterizations of hemirings by their h-ideals, Comput. Math. Appl. 59, 3167–3179, 2010.
  • Dutta, T. K. and Sardar, S. K. On the operator semirings of a Γ-semiring, Southeast Asian Bull. Math. 26, 203–213, 2002.
  • Golan, J. S. Semirings and their Applications (Kluwer Academic Publishers, Netherlands, ). Henriksen, M. Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6, , 1958.
  • Iizuka, K. On the Jacobson radical of semiring, Tohoku Math. J. 11 (2), 409–421, 1959.
  • Jun, Y. B. and Lee, C. Y. Fuzzy Γ-rings, Pusom Kyongnam Math. J. 8 (2), 63–170, 1992.
  • Jun, Y. B., ¨Ozt¨urk, M. A. and Song, S. Z. On Fuzzy h-ideals in hemiring, Information Sci- ences 162, 211–226, 2004.
  • La Torre, D. R. On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12, 219–226, Ma, X. and Zhan, J. Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Comput and Applications 19, 477–485, 2010.
  • Ma, X. and Zhan, J. Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings, Infor- mation Sciences 179, 1249–1268, 2009.
  • Rao, M. M. K. Γ-semirings-1, Southeast Asian Bull. Math. 19, 49–54, 1995.
  • Sardar, S. K. and Mandal, D. Fuzzy h-ideals in Γ-hemiring, Int. J. Pure. Appl. Math. 56 (3), –450, 2009.
  • Sardar, S. K. and Mandal, D. Prime (semiprime) fuzzy h-ideals in Γ-hemiring, Int. J. Com- put. Math. Sci. 5 (3), 160–164, 2011.
  • Sardar, S. K. and Mandal, D. On fuzzy h-ideals in h-regular Γ-hemirings and h-duo Γ- hemirings, Gen. Math. Notes. 2 (1), 64–85, 2011.
  • Zadeh, L. A. Fuzzy sets, Information and Control 8, 338–353, 1965.
  • Zhan, J. and Dudek, W. A. Fuzzy h-ideals of hemirings, Information Sciences 177, 876–886,
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Statistics
Journal Section Mathematics
Authors

Debabrata M This is me

Publication Date April 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 4

Cite

APA M, D. (2012). Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics, 41(4), 449-465.
AMA M D. Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics. April 2012;41(4):449-465.
Chicago M, Debabrata. “Correspondence Between Fuzzy H-Ideals of a G-Hemiring and Fuzzy H-Ideals of Its Operator Hemirings”. Hacettepe Journal of Mathematics and Statistics 41, no. 4 (April 2012): 449-65.
EndNote M D (April 1, 2012) Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics 41 4 449–465.
IEEE D. M, “Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, pp. 449–465, 2012.
ISNAD M, Debabrata. “Correspondence Between Fuzzy H-Ideals of a G-Hemiring and Fuzzy H-Ideals of Its Operator Hemirings”. Hacettepe Journal of Mathematics and Statistics 41/4 (April 2012), 449-465.
JAMA M D. Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics. 2012;41:449–465.
MLA M, Debabrata. “Correspondence Between Fuzzy H-Ideals of a G-Hemiring and Fuzzy H-Ideals of Its Operator Hemirings”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 4, 2012, pp. 449-65.
Vancouver M D. Correspondence Between Fuzzy h-Ideals of a G-Hemiring and Fuzzy h-Ideals of its Operator Hemirings. Hacettepe Journal of Mathematics and Statistics. 2012;41(4):449-65.