SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS
Year 2011,
Volume: 40 Issue: 6, 829 - 837, 01.06.2011
Erhan Deniz
Murat Çağlar
halit Orhan
Abstract
In this paper, we define two new general p-valent integral operators in the unit disc U, and obtain the convexity properties of these integral operators of p-valent functions on some classes of β-uniformly p-valent starlike and β-uniformly p-valent convex functions of complex order. As special cases, the convexity properties of the operators R z 0 f(t) t µ dt and R z 0 (g ′ (t))µ dt are given.
References
- Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12–22, 1915.
- Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex func- tions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17–32, 1997.
- Bulut, S. A note on the paper of Breaz and G¨uney, J. Math. Ineq. 2 (4), 549–553, 2008.
- Breaz, D. A convexity properties for an integral operator on the classes Sp(α), Gen. Math. (2-3), 177–183, 2007.
- Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39–43, 2009.
- Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes-Bolyai Math. 47 (3), –19, 2002.
- Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
- Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11–16, 2008.
- Breaz, D. and G¨uney, H. ¨O. The integral operator on the classes S*α(b) and Cα(b), J. Math. Ineq. 2 (1), 97–100, 2008.
- Deniz, E., Orhan, H. and Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains, submitted. Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. , 601–605, 2010.
- Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. , 179–191, 2006.
- Goel, R. M. and Sohi, N. S. A new criterion for p-valent functions, Proc. Amer. Math. Soc. , 353–357, 1980.
- Goodman, A. W. On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
- Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. , 327–336, 1999.
- Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249–252, 1972.
- Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. (1), 157–168, 1978.
- Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), –12, 1985.
- Orhan, H., Deniz, E. and R˘aducanu, D. The Fekete–Szeg¨o problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. (1), 283–295, 2010.
- Oros, G. I. New results related to the convexity and starlikeness of the Bernardi integral operator, Hacet. J. Math. Stat. 38 (2), 137–143, 2009.
- Oros, G. I. and Oros, G. A convexity property for an integral operator Fm, Stud. Univ. Babes-Bolyai Math. 55 (3), 169–177, 2010.
- Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347–35, 2000.
- Pfaltzgraff, J. A. Univalence of the integral of (f′(z))λ, Bull. London Math. Soc. 7 (3), 254– , 1975.
- Rİnning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sk ˜Alodowska Sect. A. 45 (14), 117–122, 1991.
- Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75–85, 1971.
SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS
Year 2011,
Volume: 40 Issue: 6, 829 - 837, 01.06.2011
Erhan Deniz
Murat Çağlar
halit Orhan
References
- Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12–22, 1915.
- Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex func- tions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17–32, 1997.
- Bulut, S. A note on the paper of Breaz and G¨uney, J. Math. Ineq. 2 (4), 549–553, 2008.
- Breaz, D. A convexity properties for an integral operator on the classes Sp(α), Gen. Math. (2-3), 177–183, 2007.
- Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39–43, 2009.
- Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes-Bolyai Math. 47 (3), –19, 2002.
- Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
- Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11–16, 2008.
- Breaz, D. and G¨uney, H. ¨O. The integral operator on the classes S*α(b) and Cα(b), J. Math. Ineq. 2 (1), 97–100, 2008.
- Deniz, E., Orhan, H. and Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains, submitted. Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. , 601–605, 2010.
- Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. , 179–191, 2006.
- Goel, R. M. and Sohi, N. S. A new criterion for p-valent functions, Proc. Amer. Math. Soc. , 353–357, 1980.
- Goodman, A. W. On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
- Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. , 327–336, 1999.
- Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249–252, 1972.
- Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. (1), 157–168, 1978.
- Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), –12, 1985.
- Orhan, H., Deniz, E. and R˘aducanu, D. The Fekete–Szeg¨o problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. (1), 283–295, 2010.
- Oros, G. I. New results related to the convexity and starlikeness of the Bernardi integral operator, Hacet. J. Math. Stat. 38 (2), 137–143, 2009.
- Oros, G. I. and Oros, G. A convexity property for an integral operator Fm, Stud. Univ. Babes-Bolyai Math. 55 (3), 169–177, 2010.
- Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347–35, 2000.
- Pfaltzgraff, J. A. Univalence of the integral of (f′(z))λ, Bull. London Math. Soc. 7 (3), 254– , 1975.
- Rİnning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sk ˜Alodowska Sect. A. 45 (14), 117–122, 1991.
- Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75–85, 1971.