Research Article
BibTex RIS Cite

SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS

Year 2011, Volume: 40 Issue: 6, 829 - 837, 01.06.2011

Abstract

In this paper, we define two new general p-valent integral operators in the unit disc U, and obtain the convexity properties of these integral operators of p-valent functions on some classes of β-uniformly p-valent starlike and β-uniformly p-valent convex functions of complex order. As special cases, the convexity properties of the operators R z 0 f(t) t µ dt and R z 0 (g ′ (t))µ dt are given.

References

  • Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12–22, 1915.
  • Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex func- tions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17–32, 1997.
  • Bulut, S. A note on the paper of Breaz and G¨uney, J. Math. Ineq. 2 (4), 549–553, 2008.
  • Breaz, D. A convexity properties for an integral operator on the classes Sp(α), Gen. Math. (2-3), 177–183, 2007.
  • Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39–43, 2009.
  • Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes-Bolyai Math. 47 (3), –19, 2002.
  • Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
  • Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11–16, 2008.
  • Breaz, D. and G¨uney, H. ¨O. The integral operator on the classes S*α(b) and Cα(b), J. Math. Ineq. 2 (1), 97–100, 2008.
  • Deniz, E., Orhan, H. and Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains, submitted. Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. , 601–605, 2010.
  • Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. , 179–191, 2006.
  • Goel, R. M. and Sohi, N. S. A new criterion for p-valent functions, Proc. Amer. Math. Soc. , 353–357, 1980.
  • Goodman, A. W. On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
  • Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. , 327–336, 1999.
  • Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249–252, 1972.
  • Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. (1), 157–168, 1978.
  • Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), –12, 1985.
  • Orhan, H., Deniz, E. and R˘aducanu, D. The Fekete–Szeg¨o problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. (1), 283–295, 2010.
  • Oros, G. I. New results related to the convexity and starlikeness of the Bernardi integral operator, Hacet. J. Math. Stat. 38 (2), 137–143, 2009.
  • Oros, G. I. and Oros, G. A convexity property for an integral operator Fm, Stud. Univ. Babes-Bolyai Math. 55 (3), 169–177, 2010.
  • Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347–35, 2000.
  • Pfaltzgraff, J. A. Univalence of the integral of (f′(z))λ, Bull. London Math. Soc. 7 (3), 254– , 1975.
  • Rİnning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sk ˜Alodowska Sect. A. 45 (14), 117–122, 1991.
  • Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75–85, 1971.

SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS

Year 2011, Volume: 40 Issue: 6, 829 - 837, 01.06.2011

Abstract

References

  • Alexander, J. W. Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1), 12–22, 1915.
  • Bharti, R., Parvatham, R. and Swaminathan, A. On subclasses of uniformly convex func- tions and corresponding class of starlike functions, Tamkang J. Math. 28 (1), 17–32, 1997.
  • Bulut, S. A note on the paper of Breaz and G¨uney, J. Math. Ineq. 2 (4), 549–553, 2008.
  • Breaz, D. A convexity properties for an integral operator on the classes Sp(α), Gen. Math. (2-3), 177–183, 2007.
  • Breaz, D., Aouf, M. K. and Breaz, N. Some properties for integral operators on some analytic functions with complex order, Acta. Math. Acad. Paedagog. Nyhazi. 25, 39–43, 2009.
  • Breaz, D. and Breaz, N. Two integral operators, Stud. Univ. Babes-Bolyai Math. 47 (3), –19, 2002.
  • Breaz, D. and Breaz, N. Some convexity properties for a general integral operator, J. Ineq. Pure Appl. Math. 7 (5), Art. 177, 2006.
  • Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16, 11–16, 2008.
  • Breaz, D. and G¨uney, H. ¨O. The integral operator on the classes S*α(b) and Cα(b), J. Math. Ineq. 2 (1), 97–100, 2008.
  • Deniz, E., Orhan, H. and Sokol, J. Classes of analytic functions defined by a differential operator related to conic domains, submitted. Frasin, B. A. Convexity of integral operators of p-valent functions, Math. Comput. Model. , 601–605, 2010.
  • Frasin, B. A. Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. , 179–191, 2006.
  • Goel, R. M. and Sohi, N. S. A new criterion for p-valent functions, Proc. Amer. Math. Soc. , 353–357, 1980.
  • Goodman, A. W. On uniformly convex functions, Ann. Polon. Math. 56, 87–92, 1991.
  • Kanas, S. and Wisniowska, A. Conic regions and k-uniform convexity, Comput. Appl. Math. , 327–336, 1999.
  • Kim, Y. J. and Merkes, E. P. On an integral of powers of a spirallike function, Kyungpook Math. J. 12, 249–252, 1972.
  • Miller, S. S., Mocanu, P. T. and Reade, M. O. Starlike integral operators, Pacific J. Math. (1), 157–168, 1978.
  • Nasr, M. A. and Aouf, M. K. Starlike function of complex order, J. Natur. Sci. Math. 25 (1), –12, 1985.
  • Orhan, H., Deniz, E. and R˘aducanu, D. The Fekete–Szeg¨o problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. (1), 283–295, 2010.
  • Oros, G. I. New results related to the convexity and starlikeness of the Bernardi integral operator, Hacet. J. Math. Stat. 38 (2), 137–143, 2009.
  • Oros, G. I. and Oros, G. A convexity property for an integral operator Fm, Stud. Univ. Babes-Bolyai Math. 55 (3), 169–177, 2010.
  • Pescar, V. and Owa, S. Sufficient conditions for univalence of certain integral operators, Indian J. Math. 42 (3), 347–35, 2000.
  • Pfaltzgraff, J. A. Univalence of the integral of (f′(z))λ, Bull. London Math. Soc. 7 (3), 254– , 1975.
  • Rİnning, F. On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sk ˜Alodowska Sect. A. 45 (14), 117–122, 1991.
  • Wiatrowski, P. The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Uniw.Lodz. Nauki Mat. Pryrod. Ser. 3, 75–85, 1971.
There are 24 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Erhan Deniz This is me

Murat Çağlar This is me

 halit Orhan This is me

Publication Date June 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 6

Cite

APA Deniz, E., Çağlar, M., & Orhan, . (2011). SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS. Hacettepe Journal of Mathematics and Statistics, 40(6), 829-837.
AMA Deniz E, Çağlar M, Orhan . SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS. Hacettepe Journal of Mathematics and Statistics. June 2011;40(6):829-837.
Chicago Deniz, Erhan, Murat Çağlar, and  halit Orhan. “SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS”. Hacettepe Journal of Mathematics and Statistics 40, no. 6 (June 2011): 829-37.
EndNote Deniz E, Çağlar M, Orhan  (June 1, 2011) SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS. Hacettepe Journal of Mathematics and Statistics 40 6 829–837.
IEEE E. Deniz, M. Çağlar, and  . Orhan, “SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 6, pp. 829–837, 2011.
ISNAD Deniz, Erhan et al. “SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS”. Hacettepe Journal of Mathematics and Statistics 40/6 (June 2011), 829-837.
JAMA Deniz E, Çağlar M, Orhan . SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS. Hacettepe Journal of Mathematics and Statistics. 2011;40:829–837.
MLA Deniz, Erhan et al. “SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 6, 2011, pp. 829-37.
Vancouver Deniz E, Çağlar M, Orhan . SOME CONVEXITY PROPERTIES FOR TWO NEW P -VALENT INTEGRAL OPERATORS. Hacettepe Journal of Mathematics and Statistics. 2011;40(6):829-37.