BibTex RIS Cite

Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions

Year 2011, Volume: 40 Issue: 4, 493 - 502, 01.04.2011

References

  • Ali, R. M., Badghaish, A. O. and Ravichandran, V. Subordination for higher-order deriva- tives of multivalent functions, J. Ineq. Appl. 2008, Art. ID 830138, 1-12, 2008.
  • Altinatas, O. Neighborhoods of certain subclasses of p-valently analytic functions with neg- ative coefficients, Appl. Math. Comput. 187 (1), 47–53, 2007.
  • Altinatas, O., Irmak, H. and Srivastava, H. M. Neighborhoods for certain subclasses of mul- tivalently analytic functions defined by differential operator, Comput. Math. Appl. 55 (9), 331–338, 2008.
  • Aouf, M. K., Al-Oboudi, F. M. and Hidan, M. M. On some results for λ-spirallike and λ- Robertson functions of complex order, Publ. Institute Math. Belgrade 77 (91), 93–98, 2005. [5] Bulboaca, T. Differential Subordinations and Superordinations, Recent Results (House of Scientific Book Publ., Cluj-Napoca, 2005).
  • Chen, M.P., Irmak, H. and Srivastava, H. M. Some multivalent functions with negative coefficients defined by using a differential operator, PanAmerc. Math. J. 6 (2), 55–64, 1996. [7] El-Ashwah, R. M. Inclusion and neighborhood properties of a certain subclasses of p-valent functions with negative coefficients, Filomat 23 (3), 1–13, 2009.
  • Frasin, B. A. Neighborhoods of certain multivalent analytic functions with negative coeffi- cients, Appl. Math. Comput. 193 (1), 1–6, 2007.
  • Irmak, H. A class of p-valently analytic function with positive coefficients, Tamkang J. of Math. 27 (4), 315–322, 1996.
  • Irmak, H. and Cho, N. E. A differential operator and its applications to certain multivalently analytic functions, Hacet. J. Math. Stat. 36 (1), 1–6, 2007.
  • Irmak, H., Lee, S. H. and Cho, N. E. Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator, Kyungpook Math. J. 37 (1), 43–51, 1997.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations: Theory and Applications (Series on Mongraphs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York. and Basel, 2000).
  • Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Vari- ables 48 (10), 815–826, 2003.
  • Murugusundaramoorthy, G. and Magesh, N. Differential subordinations and superordina- tions for analytic functions defined by the Dziok-Srivastava linear operator, J. Inequal. Pure Appl. Math. 7 (4), Art. 152, 1–9, 2006.
  • Nunokawa, M. On the multivalent function, Indian J. Pure Appl. Math. 20 (6), 577–582, 1989. [16] Obradovic, M. and Owa, S. On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145, 357–364, 1990.
  • Polatoglu, Y. Some result of analytic function in the unit disc, Publications de l’Institut Math. 78 (92), 79–85, 2005.
  • Royster, W. C. On the univalence of a certain integral, Michigan Math. J. 12, 385–387, 1965. [19] Shanmugam, T. N., Sivasubramanian, S., Darus, M. and Ramachandran, C. Subordination and superordination results for subclasses of analytic functions, Internat. J. Math. Forum 2(21), 1039–1052, 2007.
  • Silverman, H. Higher order derivatives, Chinese J. of Math. 23 (2), 189–191, 1995.
  • Srivastava, H. M. and Lashin, A. Y. Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure. Appl. Math. 6 (2), Art. 41, 1–7, 2005.
  • Yaguchi, T. The radii of starlikeness and convexity for certain multivalent functions, in: Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa) (World Scientific, River Edge, NJ, USA, 1992) 375-386.

Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions

Year 2011, Volume: 40 Issue: 4, 493 - 502, 01.04.2011

References

  • Ali, R. M., Badghaish, A. O. and Ravichandran, V. Subordination for higher-order deriva- tives of multivalent functions, J. Ineq. Appl. 2008, Art. ID 830138, 1-12, 2008.
  • Altinatas, O. Neighborhoods of certain subclasses of p-valently analytic functions with neg- ative coefficients, Appl. Math. Comput. 187 (1), 47–53, 2007.
  • Altinatas, O., Irmak, H. and Srivastava, H. M. Neighborhoods for certain subclasses of mul- tivalently analytic functions defined by differential operator, Comput. Math. Appl. 55 (9), 331–338, 2008.
  • Aouf, M. K., Al-Oboudi, F. M. and Hidan, M. M. On some results for λ-spirallike and λ- Robertson functions of complex order, Publ. Institute Math. Belgrade 77 (91), 93–98, 2005. [5] Bulboaca, T. Differential Subordinations and Superordinations, Recent Results (House of Scientific Book Publ., Cluj-Napoca, 2005).
  • Chen, M.P., Irmak, H. and Srivastava, H. M. Some multivalent functions with negative coefficients defined by using a differential operator, PanAmerc. Math. J. 6 (2), 55–64, 1996. [7] El-Ashwah, R. M. Inclusion and neighborhood properties of a certain subclasses of p-valent functions with negative coefficients, Filomat 23 (3), 1–13, 2009.
  • Frasin, B. A. Neighborhoods of certain multivalent analytic functions with negative coeffi- cients, Appl. Math. Comput. 193 (1), 1–6, 2007.
  • Irmak, H. A class of p-valently analytic function with positive coefficients, Tamkang J. of Math. 27 (4), 315–322, 1996.
  • Irmak, H. and Cho, N. E. A differential operator and its applications to certain multivalently analytic functions, Hacet. J. Math. Stat. 36 (1), 1–6, 2007.
  • Irmak, H., Lee, S. H. and Cho, N. E. Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator, Kyungpook Math. J. 37 (1), 43–51, 1997.
  • Miller, S. S. and Mocanu, P. T. Differential subordinations: Theory and Applications (Series on Mongraphs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York. and Basel, 2000).
  • Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Vari- ables 48 (10), 815–826, 2003.
  • Murugusundaramoorthy, G. and Magesh, N. Differential subordinations and superordina- tions for analytic functions defined by the Dziok-Srivastava linear operator, J. Inequal. Pure Appl. Math. 7 (4), Art. 152, 1–9, 2006.
  • Nunokawa, M. On the multivalent function, Indian J. Pure Appl. Math. 20 (6), 577–582, 1989. [16] Obradovic, M. and Owa, S. On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145, 357–364, 1990.
  • Polatoglu, Y. Some result of analytic function in the unit disc, Publications de l’Institut Math. 78 (92), 79–85, 2005.
  • Royster, W. C. On the univalence of a certain integral, Michigan Math. J. 12, 385–387, 1965. [19] Shanmugam, T. N., Sivasubramanian, S., Darus, M. and Ramachandran, C. Subordination and superordination results for subclasses of analytic functions, Internat. J. Math. Forum 2(21), 1039–1052, 2007.
  • Silverman, H. Higher order derivatives, Chinese J. of Math. 23 (2), 189–191, 1995.
  • Srivastava, H. M. and Lashin, A. Y. Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure. Appl. Math. 6 (2), Art. 41, 1–7, 2005.
  • Yaguchi, T. The radii of starlikeness and convexity for certain multivalent functions, in: Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa) (World Scientific, River Edge, NJ, USA, 1992) 375-386.
There are 18 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

R.m. El-ashwah This is me

M.k. Aouf This is me

Publication Date April 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 4

Cite

APA El-ashwah, R., & Aouf, M. (2011). Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions. Hacettepe Journal of Mathematics and Statistics, 40(4), 493-502.
AMA El-ashwah R, Aouf M. Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions. Hacettepe Journal of Mathematics and Statistics. April 2011;40(4):493-502.
Chicago El-ashwah, R.m., and M.k. Aouf. “Subordination and Superordination for Higher-Order Derivatives of P-Valent Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 40, no. 4 (April 2011): 493-502.
EndNote El-ashwah R, Aouf M (April 1, 2011) Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions. Hacettepe Journal of Mathematics and Statistics 40 4 493–502.
IEEE R. El-ashwah and M. Aouf, “Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, pp. 493–502, 2011.
ISNAD El-ashwah, R.m. - Aouf, M.k. “Subordination and Superordination for Higher-Order Derivatives of P-Valent Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 40/4 (April 2011), 493-502.
JAMA El-ashwah R, Aouf M. Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions. Hacettepe Journal of Mathematics and Statistics. 2011;40:493–502.
MLA El-ashwah, R.m. and M.k. Aouf. “Subordination and Superordination for Higher-Order Derivatives of P-Valent Analytic Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, 2011, pp. 493-02.
Vancouver El-ashwah R, Aouf M. Subordination and Superordination for Higher-Order Derivatives of p-Valent Analytic Functions. Hacettepe Journal of Mathematics and Statistics. 2011;40(4):493-502.