Research Article
BibTex RIS Cite

X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES

Year 2011, Volume: 40 Issue: 4, 537 - 554, 01.04.2011

Abstract

References

  • Bennis, D. and Mahdou, N. Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2), –465, 2010.
  • Bennis, D. and Ouarghi, K. X-Gorenstein projective modules, International Mathematical Forum 5 (10), 487–491, 2010.
  • Christensen, L. W. Gorenstein Dimensions, Lecture Notes in Math. 1747 (Springer, Berlin. Heidelberg, 2000).
  • Ding, N. Q., Li, Y. L. and Mao, L. X. Strongly Gorenstein flat modules, J. Aust. Math. Soc. , 323–338, 2009.
  • Enochs, E. E. Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189– , 1981.
  • Enochs, E. E. and Jenda, O. M. G. Gorenstein injective and Gorenstein projective modules, Math. Z. 220, 611–633, 1995.
  • Enochs, E. E. and Jenda, O. M. G. Relative Homological Algebra, GEM 30 (Walter de Gruyter, Berlin-New York, 2000).
  • Enochs, E. E., Jenda, O. M. G. and L´opez-Ramos, J. A. The existence of Gorenstein flat covers, Math. Scand. 94, 46–62, 2004.
  • Enochs, E. E. and Oyonarte, L. Covers, envelopes and cotorsion theories (Nova Science Publishers, Inc, New York, 2002).
  • Fieldhouse, D. J. Character modules, dimension and purity, Glasgow Math. J. 13, 144–146, G¨obel, R. and Trlifaj, J. Approximations and Endomorphism Algebras of Modules, GEM (Walter de Gruyter, Berlin-New York, 2006).
  • Holm, H. Gorenstein homological dimensions, J. Pure Appl. Algebra 189, 167–193, 2004.
  • Mao, L. X. and Ding, N. Q. Gorenstein F P -injective and Gorenstein flat modules, J. Algebra Appl. 7, 491–506, 2008.
  • Megibben, C. Absolutely pure modules, Proc. Amer. Math. Soc. 26 (4), 561–566, 1970.
  • Tamekkante, M. The right orthogonal class GP(R)⊥viaExt, arXiv: 0911.1272.

X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES

Year 2011, Volume: 40 Issue: 4, 537 - 554, 01.04.2011

Abstract

Let X be a class of right R-modules that contains all projective right R-modules. The notion of X-Gorenstein projective modules was introduced by D. Bennis and K. Ouarghi (X-Gorenstein projective modules, International Mathematical Forum 5 (10), 487–491, 2010). In this paper, we introduce Y-Gorenstein injective right R-modules and Y-Gorenstein flat left R-modules, where Y is a class of right R-modules that contains all injective right R-modules. We show that the principal results on Gorenstein modules remain true for X-Gorenstein projective right R-modules, Y-Gorenstein injective right R-modules and Y-Gorenstein flat left R-modules.

References

  • Bennis, D. and Mahdou, N. Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2), –465, 2010.
  • Bennis, D. and Ouarghi, K. X-Gorenstein projective modules, International Mathematical Forum 5 (10), 487–491, 2010.
  • Christensen, L. W. Gorenstein Dimensions, Lecture Notes in Math. 1747 (Springer, Berlin. Heidelberg, 2000).
  • Ding, N. Q., Li, Y. L. and Mao, L. X. Strongly Gorenstein flat modules, J. Aust. Math. Soc. , 323–338, 2009.
  • Enochs, E. E. Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189– , 1981.
  • Enochs, E. E. and Jenda, O. M. G. Gorenstein injective and Gorenstein projective modules, Math. Z. 220, 611–633, 1995.
  • Enochs, E. E. and Jenda, O. M. G. Relative Homological Algebra, GEM 30 (Walter de Gruyter, Berlin-New York, 2000).
  • Enochs, E. E., Jenda, O. M. G. and L´opez-Ramos, J. A. The existence of Gorenstein flat covers, Math. Scand. 94, 46–62, 2004.
  • Enochs, E. E. and Oyonarte, L. Covers, envelopes and cotorsion theories (Nova Science Publishers, Inc, New York, 2002).
  • Fieldhouse, D. J. Character modules, dimension and purity, Glasgow Math. J. 13, 144–146, G¨obel, R. and Trlifaj, J. Approximations and Endomorphism Algebras of Modules, GEM (Walter de Gruyter, Berlin-New York, 2006).
  • Holm, H. Gorenstein homological dimensions, J. Pure Appl. Algebra 189, 167–193, 2004.
  • Mao, L. X. and Ding, N. Q. Gorenstein F P -injective and Gorenstein flat modules, J. Algebra Appl. 7, 491–506, 2008.
  • Megibben, C. Absolutely pure modules, Proc. Amer. Math. Soc. 26 (4), 561–566, 1970.
  • Tamekkante, M. The right orthogonal class GP(R)⊥viaExt, arXiv: 0911.1272.
There are 14 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Fanyun Meng This is me

Qunxing Pan This is me

Publication Date April 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 4

Cite

APA Meng, F., & Pan, Q. (2011). X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES. Hacettepe Journal of Mathematics and Statistics, 40(4), 537-554.
AMA Meng F, Pan Q. X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES. Hacettepe Journal of Mathematics and Statistics. April 2011;40(4):537-554.
Chicago Meng, Fanyun, and Qunxing Pan. “X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES”. Hacettepe Journal of Mathematics and Statistics 40, no. 4 (April 2011): 537-54.
EndNote Meng F, Pan Q (April 1, 2011) X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES. Hacettepe Journal of Mathematics and Statistics 40 4 537–554.
IEEE F. Meng and Q. Pan, “X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, pp. 537–554, 2011.
ISNAD Meng, Fanyun - Pan, Qunxing. “X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES”. Hacettepe Journal of Mathematics and Statistics 40/4 (April 2011), 537-554.
JAMA Meng F, Pan Q. X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES. Hacettepe Journal of Mathematics and Statistics. 2011;40:537–554.
MLA Meng, Fanyun and Qunxing Pan. “X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 4, 2011, pp. 537-54.
Vancouver Meng F, Pan Q. X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES. Hacettepe Journal of Mathematics and Statistics. 2011;40(4):537-54.