ON THE EXISTENCE INTERVAL FOR THE INITIAL VALUE PROBLEM OF A FRACTIONAL DIFFERENTIAL EQUATION
Year 2011,
Volume: 40 Issue: 4, 581 - 587, 01.04.2011
Dumitru Baleanu
Octavian G. Mustafa
References
- Agrawal, O. P. Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272, 368–379, 2002.
- Ahlfors, L. V. Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable(McGraw-Hill, New York, 1979).
- Atanackovi¸c, T. M., Konjik, S. and Pipilovi¸c, S. Variational problems with fractional deriva- tives: Euler-Lagrange equations, J. Phys. A 41 (9): Art. No. 095201, 2008
- B˘aleanu, D., Muslih, S. I. and Rabei, E. M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative, Nonlin. Dyn. 53, 67–74, 2008.
- B˘aleanu, D. New applications of fractional variational principles, Rep. Math. Phys. 61, 331–335, 2008.
- B˘aleanu, D. and Trujillo, J. J. On exact solutions of a class of fractional Euler-Lagrange equations, Nonlin. Dyn. 52, 199–206, 2008.
- Caputo, M. Linear models of dissipation whose Q is almost frequency indepedent, II, Geo- phys. J. Roy. Astronom. Soc. 13, 529–539, 1967.
- Chen, W. An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, Internat. J. Robust Nonlin. Control 16 (1) DOI 10.1002/rnc.1033, 2006. [9] Delbosco, D. and Rodino, L. Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204, 609–625, 1996.
- Deng, W., Li, C. and L¨u, J. Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn. 48, 409–416, 2007.
- Diethelm, K. and Ford, N. J. Analysis of fractional differential equations, J. Math. Anal. Appl. 265, 229–248, 2002.
- Diethelm, K. The analysis of Fractional Differential Equations (Springer-Verlag, Berlin, 2010).
- Dugundji, J. and Granas, A. Fixed point theory I (Monogr. Matem. 61, PWN, Warszawa, 1982).
- Gl¨ocke, W. G. and Nonnenmacher, T. F. A fractional calculus approach to self-similar pro- tein dynamics, Biophys. J. 68, 46–53, 1995.
- Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. Theory and applications of fractional differential equations(North-Holland Math. Stud. 204, Elsevier, Amsterdam, 2006).
- Klimek, M. Lagrangian and Hamiltonian fractional sequential mechanics, Czech. J. Phys. 52, 1247–1252, 2002.
- Lakshmikantham, V. and Vatsala, A. S. Basic theory of fractional differential equations, Nonlinear Anal. TMA 69, 2677–2682, 2008.
- Machado, J. A. Tenreiro A probabilistic interpretation of the fractional-order differentiation, Frac. Calc. Appl. Anal. 8, 73–80, 2003.
- Magin, R. L. Fractional calculus in bioengineering (Begell House Publ., Inc., Connecticut, 2006).
- Magin, R. L., Abdullah, O., B˘aleanu, D. and Xiaohong, J. Z. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Mag. Res. 190, 255–270, 2008.
- Mainardi, F., Luchko, Yu. and Pagnini, G. ??????, Frac. Calc. Appl. Anal. 4, 153–161, 2001.
- Metzler, R., Schick, W., Kilian, H. G. and Nonennmacher, T. F. Relaxation in filled poly- mers: A fractional calculus approach, J. Chem. Phys 103, 7180–7186, 1995.
- Momani, S. and Odibat, Z. A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula, J. Comput. Appl. Math. 220(2008), 85–95, 2008.
- Momani, S. and Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365, 345–350, 2007.
- Muslih, S. I. and B˘aleanu, D. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives, J. Math. Anal. Appl. 304, 599–606, 2005. [26] Mustafa, O. G. and Rogovchenko, Yu. V. Estimates for domains of local invertibility of diffeomorphisms, Proc. Amer. Math. Soc. 135, 69–75, 2007.
- Mustafa, O. G. On the existence interval in Peano’s theorem, Ann. A.I. Cuza Univ. Ser. Math., Ia¸si, Romania, LI, 55–64, 2005.
- Podlubny, I. Fractional Differential Equations (Academic Press, San Diego, 1999).
- Sabatier, J., Agrawal, O. P. and Machado, J. A. Tenreiro (eds.) (Advances in fractional calculus. Theoretical developments and applications in physics and engineering, Springer- Verlag, Dordrecht, 2007).
- Samko, S. G., Kilbas, A. A. and Marichev, O. I. Fractional Integrals and Derivatives. Theory and Applications(Gordon and Breach, Switzerland, 1993).
ON THE EXISTENCE INTERVAL FOR THE INITIAL VALUE PROBLEM OF A FRACTIONAL DIFFERENTIAL EQUATION
Year 2011,
Volume: 40 Issue: 4, 581 - 587, 01.04.2011
Dumitru Baleanu
Octavian G. Mustafa
Abstract
We compute via a comparison function technique, a new bound for the existence interval of the initial value problem for a fractional differential equation given by means of Caputo derivatives. We improve in this way the estimate of the existence interval obtained very recently in the literature.
References
- Agrawal, O. P. Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272, 368–379, 2002.
- Ahlfors, L. V. Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable(McGraw-Hill, New York, 1979).
- Atanackovi¸c, T. M., Konjik, S. and Pipilovi¸c, S. Variational problems with fractional deriva- tives: Euler-Lagrange equations, J. Phys. A 41 (9): Art. No. 095201, 2008
- B˘aleanu, D., Muslih, S. I. and Rabei, E. M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative, Nonlin. Dyn. 53, 67–74, 2008.
- B˘aleanu, D. New applications of fractional variational principles, Rep. Math. Phys. 61, 331–335, 2008.
- B˘aleanu, D. and Trujillo, J. J. On exact solutions of a class of fractional Euler-Lagrange equations, Nonlin. Dyn. 52, 199–206, 2008.
- Caputo, M. Linear models of dissipation whose Q is almost frequency indepedent, II, Geo- phys. J. Roy. Astronom. Soc. 13, 529–539, 1967.
- Chen, W. An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, Internat. J. Robust Nonlin. Control 16 (1) DOI 10.1002/rnc.1033, 2006. [9] Delbosco, D. and Rodino, L. Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204, 609–625, 1996.
- Deng, W., Li, C. and L¨u, J. Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn. 48, 409–416, 2007.
- Diethelm, K. and Ford, N. J. Analysis of fractional differential equations, J. Math. Anal. Appl. 265, 229–248, 2002.
- Diethelm, K. The analysis of Fractional Differential Equations (Springer-Verlag, Berlin, 2010).
- Dugundji, J. and Granas, A. Fixed point theory I (Monogr. Matem. 61, PWN, Warszawa, 1982).
- Gl¨ocke, W. G. and Nonnenmacher, T. F. A fractional calculus approach to self-similar pro- tein dynamics, Biophys. J. 68, 46–53, 1995.
- Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. Theory and applications of fractional differential equations(North-Holland Math. Stud. 204, Elsevier, Amsterdam, 2006).
- Klimek, M. Lagrangian and Hamiltonian fractional sequential mechanics, Czech. J. Phys. 52, 1247–1252, 2002.
- Lakshmikantham, V. and Vatsala, A. S. Basic theory of fractional differential equations, Nonlinear Anal. TMA 69, 2677–2682, 2008.
- Machado, J. A. Tenreiro A probabilistic interpretation of the fractional-order differentiation, Frac. Calc. Appl. Anal. 8, 73–80, 2003.
- Magin, R. L. Fractional calculus in bioengineering (Begell House Publ., Inc., Connecticut, 2006).
- Magin, R. L., Abdullah, O., B˘aleanu, D. and Xiaohong, J. Z. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Mag. Res. 190, 255–270, 2008.
- Mainardi, F., Luchko, Yu. and Pagnini, G. ??????, Frac. Calc. Appl. Anal. 4, 153–161, 2001.
- Metzler, R., Schick, W., Kilian, H. G. and Nonennmacher, T. F. Relaxation in filled poly- mers: A fractional calculus approach, J. Chem. Phys 103, 7180–7186, 1995.
- Momani, S. and Odibat, Z. A novel method for nonlinear fractional partial differential equations: combination of DTM and generalized Taylor’s formula, J. Comput. Appl. Math. 220(2008), 85–95, 2008.
- Momani, S. and Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365, 345–350, 2007.
- Muslih, S. I. and B˘aleanu, D. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives, J. Math. Anal. Appl. 304, 599–606, 2005. [26] Mustafa, O. G. and Rogovchenko, Yu. V. Estimates for domains of local invertibility of diffeomorphisms, Proc. Amer. Math. Soc. 135, 69–75, 2007.
- Mustafa, O. G. On the existence interval in Peano’s theorem, Ann. A.I. Cuza Univ. Ser. Math., Ia¸si, Romania, LI, 55–64, 2005.
- Podlubny, I. Fractional Differential Equations (Academic Press, San Diego, 1999).
- Sabatier, J., Agrawal, O. P. and Machado, J. A. Tenreiro (eds.) (Advances in fractional calculus. Theoretical developments and applications in physics and engineering, Springer- Verlag, Dordrecht, 2007).
- Samko, S. G., Kilbas, A. A. and Marichev, O. I. Fractional Integrals and Derivatives. Theory and Applications(Gordon and Breach, Switzerland, 1993).