Research Article
BibTex RIS Cite

Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT

Year 2011, Volume: 40 Issue: 3, 375 - 382, 01.03.2011

Abstract

In this paper we introduce the notion of equiprime N-ideals where N is a near-ring. We consider the interconnections of equiprime, 3-prime and completely prime N-ideals of a monogenic N-group Γ. We show that if P is an equiprime N-ideal of Γ, then (P : Γ)N is an equiprime ideal of N, and that the converse holds when N is a right permutable near-ring and Γ is a monogenic N-group.

References

  • Atag¨un, A. O. IFP ideals in near-rings, Hacet. J. Math. Stat. 39 (1), 17–21, 2010.
  • Atag¨un, A. O. and Groenewald, N. J. Primeness in near-rings with multiplicative semi-group satisfying ‘The Three Identities’, J. Math. Sci. Adv. Appl. 2 (1), 137–145, 2009.
  • Birkenmeier, G. and Heatherly, H. Medial near-rings, Monatsh. Math. 107, 89–110, 1989.
  • Birkenmeier, G. and Heatherly, H. Left self distributive near-rings, J. Austral. Math. Soc. (Series A) 49, 273–296, 1990.
  • Booth, G. L., Groenewald, N. J. and Veldsman, S. A Kurosh-Amitsur prime radical for near-rings, Comm. Algebra 18 (9), 3111–3122, 1990.
  • Booth, G. L. and Groenewald, N. J. Equiprime left ideals and equiprime N-groups of a near-ring, Contributions to General Algebra 8, 25–38, 1992.
  • C¸ allıalp, F. and Tekir, ¨U. On the prime radical of a module over a noncommutative ring, Taiwan. J. Math. 8 (2), 337–341, 2004.
  • Groenewald, N. J. Different prime ideals in near-rings, Comm. Algebra 19 (10), 2667–2675,
  • Holcombe, W. L. M. Primitive near-rings (Doctoral Dissertation, University of Leeds, 1970).
  • Juglal, S., Groenewald, N. J. and Lee, E. K. S. Different prime R-ideals, Algebr. Colloq. 17, –904, 2010.
  • Lomp, C. and Pe˜na, A. J. A note on prime modules, Divulgaciones Matem´aticas 8 (1), 31–42, Pilz, G. Near-rings (North-Holland, Amsterdam, 1983).
  • Ramakotaiah, D. and Rao, G. K. IFP near-rings, J. Austral. Math. Soc. (Series A) 27, –370, 1979.
  • Veldsman, S. On equiprime near-rings, Comm. Algebra 20 (9), 2569–2587, 1992.
  • Wisbauer, R. On prime modules and rings, Comm. Algebra 11 (20), 2249–2265, 1983.

Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT

Year 2011, Volume: 40 Issue: 3, 375 - 382, 01.03.2011

Abstract

References

  • Atag¨un, A. O. IFP ideals in near-rings, Hacet. J. Math. Stat. 39 (1), 17–21, 2010.
  • Atag¨un, A. O. and Groenewald, N. J. Primeness in near-rings with multiplicative semi-group satisfying ‘The Three Identities’, J. Math. Sci. Adv. Appl. 2 (1), 137–145, 2009.
  • Birkenmeier, G. and Heatherly, H. Medial near-rings, Monatsh. Math. 107, 89–110, 1989.
  • Birkenmeier, G. and Heatherly, H. Left self distributive near-rings, J. Austral. Math. Soc. (Series A) 49, 273–296, 1990.
  • Booth, G. L., Groenewald, N. J. and Veldsman, S. A Kurosh-Amitsur prime radical for near-rings, Comm. Algebra 18 (9), 3111–3122, 1990.
  • Booth, G. L. and Groenewald, N. J. Equiprime left ideals and equiprime N-groups of a near-ring, Contributions to General Algebra 8, 25–38, 1992.
  • C¸ allıalp, F. and Tekir, ¨U. On the prime radical of a module over a noncommutative ring, Taiwan. J. Math. 8 (2), 337–341, 2004.
  • Groenewald, N. J. Different prime ideals in near-rings, Comm. Algebra 19 (10), 2667–2675,
  • Holcombe, W. L. M. Primitive near-rings (Doctoral Dissertation, University of Leeds, 1970).
  • Juglal, S., Groenewald, N. J. and Lee, E. K. S. Different prime R-ideals, Algebr. Colloq. 17, –904, 2010.
  • Lomp, C. and Pe˜na, A. J. A note on prime modules, Divulgaciones Matem´aticas 8 (1), 31–42, Pilz, G. Near-rings (North-Holland, Amsterdam, 1983).
  • Ramakotaiah, D. and Rao, G. K. IFP near-rings, J. Austral. Math. Soc. (Series A) 27, –370, 1979.
  • Veldsman, S. On equiprime near-rings, Comm. Algebra 20 (9), 2569–2587, 1992.
  • Wisbauer, R. On prime modules and rings, Comm. Algebra 11 (20), 2249–2265, 1983.
There are 14 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Funda Taşdemir This is me

A.o. Atagün This is me

 h. Altındiş This is me

Publication Date March 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 3

Cite

APA Taşdemir, F., Atagün, A., & Altındiş, . (2011). Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 40(3), 375-382.
AMA Taşdemir F, Atagün A, Altındiş . Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics. March 2011;40(3):375-382.
Chicago Taşdemir, Funda, A.o. Atagün, and  h. Altındiş. “Equiprime N-Ideals of Monogenic N-Groups  ABSTRACT  |  FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 40, no. 3 (March 2011): 375-82.
EndNote Taşdemir F, Atagün A, Altındiş  (March 1, 2011) Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics 40 3 375–382.
IEEE F. Taşdemir, A. Atagün, and  . Altındiş, “Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 3, pp. 375–382, 2011.
ISNAD Taşdemir, Funda et al. “Equiprime N-Ideals of Monogenic N-Groups  ABSTRACT  |  FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 40/3 (March 2011), 375-382.
JAMA Taşdemir F, Atagün A, Altındiş . Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2011;40:375–382.
MLA Taşdemir, Funda et al. “Equiprime N-Ideals of Monogenic N-Groups  ABSTRACT  |  FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 3, 2011, pp. 375-82.
Vancouver Taşdemir F, Atagün A, Altındiş . Equiprime N-ideals of Monogenic N-groups  ABSTRACT  |  FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2011;40(3):375-82.