Research Article
BibTex RIS Cite

FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY

Year 2011, Volume: 40 Issue: 3, 421 - 431, 01.03.2011

Abstract

We establish the existence of common fuzzy fixed points for fuzzy mappings under a rational contractive condition on a metric space in connection with the Hausdorff metric on the family of fuzzy sets, and apply it to obtain common fixed points of fuzzy (multivalued) mappings satisfying a rational contractive condition associated with the d∞ (Hausdorff) metric.

References

  • Abu-Donia, H. M. Common fixed points theorems for fuzzy mappings in metric spaces under ϕ contraction condition, Chaos, Solitons & Fractals 34, 538–543, 2007.
  • Arora, S. C. and Sharma, V. Fixed points for fuzzy mappings, Fuzzy Sets and Systems 110, 127–130, 2000.
  • Azam, A. and Arshad, M. A note on “fixed point theorems for fuzzy mappings” by P. Vijayaraju and M. Marudai, Fuzzy Sets and Systems 161, 1145–1149, 2010.
  • Azam, A., Arshad, M. and Vetro, P. On a pair of fuzzy -6 c contractive mappings, Math. Comp. Modelling 52, 207–214, 2010. [5] Azam, A. and Beg, I. Common fixed points of fuzzy maps, Math. Comp. Modelling 49, 1331–1336, 2009.
  • Azam, A., Arshad, M. and Beg, I. Fixed points of fuzzy contractive and fuzzy locally con- tractive maps, Chaos, Solitons & Fractals 42 (5), 2836–2841, 2009.
  • Beg, I. and Azam, A. Fixed points of asymptotically regular multivalued mappings, J. Aus- tral. Math. Soc. (Series A) 53, 313–226, 1992.
  • Bose, R. K. and Sahani, D. Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21, 53–58, 1987.
  • Butnariu, D. Fixed point for fuzzy mapping, Fuzzy Sets and Systems 7, 191–207, 1982.
  • Cho, Y. J., Fisher, B. and Ganga, G. S. Coincidence theorems for nonlinear hybird contrac- tions, Internat. J. Math. & Math. Sci. 20, 249–256, 1997.
  • Edelstein, M. An extension of Banach’s contraction principle, Proc. Amer. Math. Soc 12, 7–10, 1961.
  • Edelstein, M. On fixed and periodic points under contractive mappings, J. London Math. Soc 37, 74–79, 1962.
  • El-Naschie, M. S. On the unification of the fundamental forces and complex time in the ε
  • ∞-space, Chaos, Solitons & Fractals 11, 1149–1162, 2000.
  • El-Naschie, M. S. On an eleven dimensional ε∞fractal space time theory, Int. J. Nonlinear Sci. Numer. Simul. 7, 407–409, 2006. [15] Fisher, B. Theorems on mappings satisfying a rational inequality, Comment. Math. univ. Caroline 19, 37–44, 1978.
  • Flores, H. R., Franulic, A. F., Medar, M. R. and Bassanezi, R. C. Stability of fixed points set of fuzzy contractions, Appl.Math. Lett. 4, 33–37, 1998.
  • Heilpern, S. Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83, 566–569, 1981.
  • Kamran, T. Common fixed points theorems for fuzzy mappings, Chaos Solitons and Fractals 38, 1378–1382, 2008.
  • Lee, B. S. and Cho, S. J. A fixed point theorem for contractive type fuzzy mappings, Fuzzy Sets and Systems 61, 309–312, 1994. [20] Lee, B. S., Sung, G. M., Cho, S. J. and Kim, D. S. A common fixed point theorem for a pair of fuzzy mappings, Fuzzy Sets and Systems 98, 133–136, 1998.
  • Nadler, S. B. Multivalued contraction mappings, Pacific J. Math. 30, 475–488, 1969.
  • Park, J. Y. and Jeong, J. U. Fixed point theorems for fuzzy mappings, Fuzzy Sets and Sys- tems 87, 111–116, 1997.
  • Weiss, M. D. Fixed points and induced fuzzy topologies for fuzzy sets, J. Math. Anal. Appl. 50, 142–150, 1975.

FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY

Year 2011, Volume: 40 Issue: 3, 421 - 431, 01.03.2011

Abstract

References

  • Abu-Donia, H. M. Common fixed points theorems for fuzzy mappings in metric spaces under ϕ contraction condition, Chaos, Solitons & Fractals 34, 538–543, 2007.
  • Arora, S. C. and Sharma, V. Fixed points for fuzzy mappings, Fuzzy Sets and Systems 110, 127–130, 2000.
  • Azam, A. and Arshad, M. A note on “fixed point theorems for fuzzy mappings” by P. Vijayaraju and M. Marudai, Fuzzy Sets and Systems 161, 1145–1149, 2010.
  • Azam, A., Arshad, M. and Vetro, P. On a pair of fuzzy -6 c contractive mappings, Math. Comp. Modelling 52, 207–214, 2010. [5] Azam, A. and Beg, I. Common fixed points of fuzzy maps, Math. Comp. Modelling 49, 1331–1336, 2009.
  • Azam, A., Arshad, M. and Beg, I. Fixed points of fuzzy contractive and fuzzy locally con- tractive maps, Chaos, Solitons & Fractals 42 (5), 2836–2841, 2009.
  • Beg, I. and Azam, A. Fixed points of asymptotically regular multivalued mappings, J. Aus- tral. Math. Soc. (Series A) 53, 313–226, 1992.
  • Bose, R. K. and Sahani, D. Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21, 53–58, 1987.
  • Butnariu, D. Fixed point for fuzzy mapping, Fuzzy Sets and Systems 7, 191–207, 1982.
  • Cho, Y. J., Fisher, B. and Ganga, G. S. Coincidence theorems for nonlinear hybird contrac- tions, Internat. J. Math. & Math. Sci. 20, 249–256, 1997.
  • Edelstein, M. An extension of Banach’s contraction principle, Proc. Amer. Math. Soc 12, 7–10, 1961.
  • Edelstein, M. On fixed and periodic points under contractive mappings, J. London Math. Soc 37, 74–79, 1962.
  • El-Naschie, M. S. On the unification of the fundamental forces and complex time in the ε
  • ∞-space, Chaos, Solitons & Fractals 11, 1149–1162, 2000.
  • El-Naschie, M. S. On an eleven dimensional ε∞fractal space time theory, Int. J. Nonlinear Sci. Numer. Simul. 7, 407–409, 2006. [15] Fisher, B. Theorems on mappings satisfying a rational inequality, Comment. Math. univ. Caroline 19, 37–44, 1978.
  • Flores, H. R., Franulic, A. F., Medar, M. R. and Bassanezi, R. C. Stability of fixed points set of fuzzy contractions, Appl.Math. Lett. 4, 33–37, 1998.
  • Heilpern, S. Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83, 566–569, 1981.
  • Kamran, T. Common fixed points theorems for fuzzy mappings, Chaos Solitons and Fractals 38, 1378–1382, 2008.
  • Lee, B. S. and Cho, S. J. A fixed point theorem for contractive type fuzzy mappings, Fuzzy Sets and Systems 61, 309–312, 1994. [20] Lee, B. S., Sung, G. M., Cho, S. J. and Kim, D. S. A common fixed point theorem for a pair of fuzzy mappings, Fuzzy Sets and Systems 98, 133–136, 1998.
  • Nadler, S. B. Multivalued contraction mappings, Pacific J. Math. 30, 475–488, 1969.
  • Park, J. Y. and Jeong, J. U. Fixed point theorems for fuzzy mappings, Fuzzy Sets and Sys- tems 87, 111–116, 1997.
  • Weiss, M. D. Fixed points and induced fuzzy topologies for fuzzy sets, J. Math. Anal. Appl. 50, 142–150, 1975.
There are 21 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Akbar Azam This is me

Publication Date March 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 3

Cite

APA Azam, A. (2011). FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY. Hacettepe Journal of Mathematics and Statistics, 40(3), 421-431.
AMA Azam A. FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY. Hacettepe Journal of Mathematics and Statistics. March 2011;40(3):421-431.
Chicago Azam, Akbar. “FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY”. Hacettepe Journal of Mathematics and Statistics 40, no. 3 (March 2011): 421-31.
EndNote Azam A (March 1, 2011) FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY. Hacettepe Journal of Mathematics and Statistics 40 3 421–431.
IEEE A. Azam, “FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 3, pp. 421–431, 2011.
ISNAD Azam, Akbar. “FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY”. Hacettepe Journal of Mathematics and Statistics 40/3 (March 2011), 421-431.
JAMA Azam A. FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY. Hacettepe Journal of Mathematics and Statistics. 2011;40:421–431.
MLA Azam, Akbar. “FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 3, 2011, pp. 421-3.
Vancouver Azam A. FUZZY FIXED POINTS OF FUZZY MAPPINGS VIA A RATIONAL INEQUALITY. Hacettepe Journal of Mathematics and Statistics. 2011;40(3):421-3.