BibTex RIS Cite

Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT 

Year 2011, Volume: 40 Issue: 2, 191 - 201, 01.02.2011

References

  • Aral, A. and Gupta, V. On the Durrmeyer type modification of the q-Baskakov type opera- tors, Nonlinear Anal. 72 (3-4), 1171–1180, 2010.
  • De Sole, A. and Kac, V. G. On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (1), 11–29, 2005.
  • De Vore, R. A. and Lorentz, G. G., Constructive Approximation (Grundlehren derMathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 303, Springer- Verlag, Berlin, 1993).
  • Gadzhiev, A. D. A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin.s theorem(Russian), Dokl. Akad. Nauk SSSR 218, 1001–1004, 1974.
  • Gadzhiev, A. D. Theorems of the type of P. P. Korovkin.s theorems (Russian), Presented at the International Conference on the Theory of Approximation of Functions (Kaluga, 1975), Mat. Zametki 20 (5), 781–786, 1976.
  • Gupta, V. and Finta, Z. On certain q-Durrmeyer type operators, Appl. Math. Comput. 209(2), 415–420, 2009.
  • Ispir, N. On modified Baskakov operators on weighted spaces, Turkish J. Math. 25 (3), 355– 365, 2001. [8] Jackson, F. H. On q-definite integrals, Quart. J. Pure Appl. Math. 41 (15), 193–203, 1910. [9] Kac, V. G. and Cheung, P. Quantum Calculus (Universitext, Springer-Verlag, New York, 2002).
  • Koelink, H. T. and Koornwinder, T. H. q-special functions, a tutorial. Deformation theory and quantum groups with applications to mathematical physics(Amherst, MA, 1990), 141– 142 (Contemp. Math. 134, Amer. Math. Soc., Providence, RI, 1992).
  • May, C. P. On Phillips operator, J. Approximation Theory 20 (4), 315–332, 1977.
  • Phillips, G. M. Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4, 511– 518, 1997. [13] Phillips, R. S. An inversion formula for Laplace transforms and semi-groups of linear op- erators, Ann. of Math. 59 (2), 352–356, 1954.

Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT 

Year 2011, Volume: 40 Issue: 2, 191 - 201, 01.02.2011

References

  • Aral, A. and Gupta, V. On the Durrmeyer type modification of the q-Baskakov type opera- tors, Nonlinear Anal. 72 (3-4), 1171–1180, 2010.
  • De Sole, A. and Kac, V. G. On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (1), 11–29, 2005.
  • De Vore, R. A. and Lorentz, G. G., Constructive Approximation (Grundlehren derMathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 303, Springer- Verlag, Berlin, 1993).
  • Gadzhiev, A. D. A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin.s theorem(Russian), Dokl. Akad. Nauk SSSR 218, 1001–1004, 1974.
  • Gadzhiev, A. D. Theorems of the type of P. P. Korovkin.s theorems (Russian), Presented at the International Conference on the Theory of Approximation of Functions (Kaluga, 1975), Mat. Zametki 20 (5), 781–786, 1976.
  • Gupta, V. and Finta, Z. On certain q-Durrmeyer type operators, Appl. Math. Comput. 209(2), 415–420, 2009.
  • Ispir, N. On modified Baskakov operators on weighted spaces, Turkish J. Math. 25 (3), 355– 365, 2001. [8] Jackson, F. H. On q-definite integrals, Quart. J. Pure Appl. Math. 41 (15), 193–203, 1910. [9] Kac, V. G. and Cheung, P. Quantum Calculus (Universitext, Springer-Verlag, New York, 2002).
  • Koelink, H. T. and Koornwinder, T. H. q-special functions, a tutorial. Deformation theory and quantum groups with applications to mathematical physics(Amherst, MA, 1990), 141– 142 (Contemp. Math. 134, Amer. Math. Soc., Providence, RI, 1992).
  • May, C. P. On Phillips operator, J. Approximation Theory 20 (4), 315–332, 1977.
  • Phillips, G. M. Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4, 511– 518, 1997. [13] Phillips, R. S. An inversion formula for Laplace transforms and semi-groups of linear op- erators, Ann. of Math. 59 (2), 352–356, 1954.
There are 10 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

İsmet Yüksel This is me

Publication Date February 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 2

Cite

APA Yüksel, İ. (2011). Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT . Hacettepe Journal of Mathematics and Statistics, 40(2), 191-201.
AMA Yüksel İ. Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT . Hacettepe Journal of Mathematics and Statistics. February 2011;40(2):191-201.
Chicago Yüksel, İsmet. “Approximation by Q-Phillips Operators  ABSTRACT  |  FULL TEXT ”. Hacettepe Journal of Mathematics and Statistics 40, no. 2 (February 2011): 191-201.
EndNote Yüksel İ (February 1, 2011) Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT . Hacettepe Journal of Mathematics and Statistics 40 2 191–201.
IEEE İ. Yüksel, “Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT ”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, pp. 191–201, 2011.
ISNAD Yüksel, İsmet. “Approximation by Q-Phillips Operators  ABSTRACT  |  FULL TEXT ”. Hacettepe Journal of Mathematics and Statistics 40/2 (February 2011), 191-201.
JAMA Yüksel İ. Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT . Hacettepe Journal of Mathematics and Statistics. 2011;40:191–201.
MLA Yüksel, İsmet. “Approximation by Q-Phillips Operators  ABSTRACT  |  FULL TEXT ”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, 2011, pp. 191-0.
Vancouver Yüksel İ. Approximation by q-Phillips Operators  ABSTRACT  |  FULL TEXT . Hacettepe Journal of Mathematics and Statistics. 2011;40(2):191-20.