Research Article
BibTex RIS Cite

UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS

Year 2011, Volume: 40 Issue: 2, 341 - 348, 01.02.2011

Abstract

The aim of this paper is to introduce a new class of continuous multifunctions, namely upper and lower na-continuous multifunctions, and to obtain some characterizations concerning upper and lower nacontinuous multifunctions. The authors investigate the graph of upper and lower na-continuous multifunctions, and the preservation of properties under upper na-continuous multifunctions. Also, the relationship between upper and lower na-continuous multifunctions and some known types of continuous multifunctions are discussed.

References

  • Akda˘g, M. On super continuous multifunctions, Acta Math. Hungar. 99 (1-2), 143–153, 2003. [2] Akda˘g, M. Weak and strong forms of continuity of multifunctions, Chaos Solitions and Fractals 32, 1337–1344, 2007.
  • Banzaru, T. On the upper semicontinuity of the upper topological limit for multifunction nets, Semin. Mat. Fiz. Inst. Politeh Timisoara, 59–64, 1983.
  • Berge, C. Escapes topologiques fonctions multivoques (Dunod, Paris, 1959)
  • Chae, G. U. Noiri, T. and Lee, D. W. On na-continuous functions, Kyungpook Math. J. 26(1), 73–79, 1986.
  • Maheswari, S. N. and Thakur, S. S. On α-compact spaces, Bull. Inst. Sinica 13, 341–347, 1985. [7] Navalagi, G. B. α-Neighbourhoods, unpublished.
  • Neubrunn, T. Strongly quasi continuous multivalued mappings, General topology and its relations to modern analysis and algebra VI. Proc of Symposium, Prague, 1986, Helderman Verlag.
  • Nijastad, O. On some classes of nearly open sets, Pacific J. Math. 15, 961–970, 1965.
  • Noiri, T. On δ-continuous functions, J. Korean Math. Soc. 16, 161–166, 1980.
  • Noiri, T. and Popa, V. Almost weakly continuous multifunctions, Demonstratio Math. 26(2), 363–380, 1993.
  • Noiri, T. Popa, V. On upper and lower M-continuous multifunctions, FILOMAT 14, 73-86, 2000. [13] Ponomarev, V. I. Properties of topological spaces preserved under multivalued continuous mappings, Amer. Math. Soc. Transl. 38 (2), 119–140, 1964.
  • Singal, M. K. and Mathur, A. On nearly compact spaces, Bull. Un. Mat. Ital. 4 (2), 702–710, 1969. [15] Stone, M. H. Applications of the theory of Boolean rings to general topology, T. A. M. S. 41, 375–381, 1937.
  • Velicko, N. V. H-closed topological spaces, Amer. Math. Soc. Transl. 78, 103–118, 1968.

UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS

Year 2011, Volume: 40 Issue: 2, 341 - 348, 01.02.2011

Abstract

References

  • Akda˘g, M. On super continuous multifunctions, Acta Math. Hungar. 99 (1-2), 143–153, 2003. [2] Akda˘g, M. Weak and strong forms of continuity of multifunctions, Chaos Solitions and Fractals 32, 1337–1344, 2007.
  • Banzaru, T. On the upper semicontinuity of the upper topological limit for multifunction nets, Semin. Mat. Fiz. Inst. Politeh Timisoara, 59–64, 1983.
  • Berge, C. Escapes topologiques fonctions multivoques (Dunod, Paris, 1959)
  • Chae, G. U. Noiri, T. and Lee, D. W. On na-continuous functions, Kyungpook Math. J. 26(1), 73–79, 1986.
  • Maheswari, S. N. and Thakur, S. S. On α-compact spaces, Bull. Inst. Sinica 13, 341–347, 1985. [7] Navalagi, G. B. α-Neighbourhoods, unpublished.
  • Neubrunn, T. Strongly quasi continuous multivalued mappings, General topology and its relations to modern analysis and algebra VI. Proc of Symposium, Prague, 1986, Helderman Verlag.
  • Nijastad, O. On some classes of nearly open sets, Pacific J. Math. 15, 961–970, 1965.
  • Noiri, T. On δ-continuous functions, J. Korean Math. Soc. 16, 161–166, 1980.
  • Noiri, T. and Popa, V. Almost weakly continuous multifunctions, Demonstratio Math. 26(2), 363–380, 1993.
  • Noiri, T. Popa, V. On upper and lower M-continuous multifunctions, FILOMAT 14, 73-86, 2000. [13] Ponomarev, V. I. Properties of topological spaces preserved under multivalued continuous mappings, Amer. Math. Soc. Transl. 38 (2), 119–140, 1964.
  • Singal, M. K. and Mathur, A. On nearly compact spaces, Bull. Un. Mat. Ital. 4 (2), 702–710, 1969. [15] Stone, M. H. Applications of the theory of Boolean rings to general topology, T. A. M. S. 41, 375–381, 1937.
  • Velicko, N. V. H-closed topological spaces, Amer. Math. Soc. Transl. 78, 103–118, 1968.
There are 12 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Ş. Yüksel This is me

T.h. Şimşekler This is me

 b. Kut This is me

Publication Date February 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 2

Cite

APA Yüksel, Ş., Şimşekler, T., & Kut, . (2011). UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS. Hacettepe Journal of Mathematics and Statistics, 40(2), 341-348.
AMA Yüksel Ş, Şimşekler T, Kut . UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS. Hacettepe Journal of Mathematics and Statistics. February 2011;40(2):341-348.
Chicago Yüksel, Ş., T.h. Şimşekler, and  b. Kut. “UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS”. Hacettepe Journal of Mathematics and Statistics 40, no. 2 (February 2011): 341-48.
EndNote Yüksel Ş, Şimşekler T, Kut  (February 1, 2011) UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS. Hacettepe Journal of Mathematics and Statistics 40 2 341–348.
IEEE Ş. Yüksel, T. Şimşekler, and  . Kut, “UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, pp. 341–348, 2011.
ISNAD Yüksel, Ş. et al. “UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS”. Hacettepe Journal of Mathematics and Statistics 40/2 (February 2011), 341-348.
JAMA Yüksel Ş, Şimşekler T, Kut . UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS. Hacettepe Journal of Mathematics and Statistics. 2011;40:341–348.
MLA Yüksel, Ş. et al. “UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, 2011, pp. 341-8.
Vancouver Yüksel Ş, Şimşekler T, Kut . UPPER AND LOWER NA-CONTINUOUS MULTIFUNCTIONS. Hacettepe Journal of Mathematics and Statistics. 2011;40(2):341-8.