Research Article
BibTex RIS Cite
Year 2010, Volume: 39 Issue: 3, 305 - 312, 01.03.2010

Abstract

References

  • Allen, P. J. A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21, 412–416, 1969.
  • Allen, P. J. Neggers, J. and Kim, H. S. Ideal theory in commutative A-semirings, Kyungpook Math. J. 46, 261–271, 2006.
  • Iseki, K. Ideal theory of semirings, Proceedings Japan Academy 32, 554–559, 1956.
  • LaTorre, D. R. A note on quotient semirings, Proc. Amer. Math. Soc. 24, 463–465, 1970.
  • Chin-Pi Lu, C.-P. Unions of prime submodules, Houston J. Math. 23 (2), 203–213, 1997.
  • Sen, M. K. and Adhikari, M. R. On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118(3), 699–703, 1993.
  • Shabir, M. and Iqbal, M. S. One-sided prime ideals in semirings, Kyungpook Math. J. 47, 473–480, 2007.
  • Weinert, H. J., Sen, M. K. and Adhikari, M. R. One-sided k-ideals and h-ideals in semirings, Math. Pannon. 7 (1), 147–162, 1996.

On Prime and Maximal k-Subsemimodules of Semimodules

Year 2010, Volume: 39 Issue: 3, 305 - 312, 01.03.2010

Abstract

In this paper, we present some characterizations of prime k-ideals and
maximal k-ideals of a semiring. Then we extend these properties to
prime k-subsemimodules and maximal k-subsemimodules of a semimodule. After that, the correspondence between prime k-ideals and
prime k-subsemimodules, and between maximal k-ideals and maximal
k-subsemimodules are given.

References

  • Allen, P. J. A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21, 412–416, 1969.
  • Allen, P. J. Neggers, J. and Kim, H. S. Ideal theory in commutative A-semirings, Kyungpook Math. J. 46, 261–271, 2006.
  • Iseki, K. Ideal theory of semirings, Proceedings Japan Academy 32, 554–559, 1956.
  • LaTorre, D. R. A note on quotient semirings, Proc. Amer. Math. Soc. 24, 463–465, 1970.
  • Chin-Pi Lu, C.-P. Unions of prime submodules, Houston J. Math. 23 (2), 203–213, 1997.
  • Sen, M. K. and Adhikari, M. R. On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118(3), 699–703, 1993.
  • Shabir, M. and Iqbal, M. S. One-sided prime ideals in semirings, Kyungpook Math. J. 47, 473–480, 2007.
  • Weinert, H. J., Sen, M. K. and Adhikari, M. R. One-sided k-ideals and h-ideals in semirings, Math. Pannon. 7 (1), 147–162, 1996.
There are 8 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Gürsel Yeşilot This is me

Publication Date March 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 3

Cite

APA Yeşilot, G. (2010). On Prime and Maximal k-Subsemimodules of Semimodules. Hacettepe Journal of Mathematics and Statistics, 39(3), 305-312.
AMA Yeşilot G. On Prime and Maximal k-Subsemimodules of Semimodules. Hacettepe Journal of Mathematics and Statistics. March 2010;39(3):305-312.
Chicago Yeşilot, Gürsel. “On Prime and Maximal K-Subsemimodules of Semimodules”. Hacettepe Journal of Mathematics and Statistics 39, no. 3 (March 2010): 305-12.
EndNote Yeşilot G (March 1, 2010) On Prime and Maximal k-Subsemimodules of Semimodules. Hacettepe Journal of Mathematics and Statistics 39 3 305–312.
IEEE G. Yeşilot, “On Prime and Maximal k-Subsemimodules of Semimodules”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 3, pp. 305–312, 2010.
ISNAD Yeşilot, Gürsel. “On Prime and Maximal K-Subsemimodules of Semimodules”. Hacettepe Journal of Mathematics and Statistics 39/3 (March 2010), 305-312.
JAMA Yeşilot G. On Prime and Maximal k-Subsemimodules of Semimodules. Hacettepe Journal of Mathematics and Statistics. 2010;39:305–312.
MLA Yeşilot, Gürsel. “On Prime and Maximal K-Subsemimodules of Semimodules”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 3, 2010, pp. 305-12.
Vancouver Yeşilot G. On Prime and Maximal k-Subsemimodules of Semimodules. Hacettepe Journal of Mathematics and Statistics. 2010;39(3):305-12.