Research Article
BibTex RIS Cite

IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS

Year 2010, Volume: 39 Issue: 3, 313 - 318, 01.03.2010

Abstract

References

  • Berman A. and Plemmons R. J. Nonnegative Matrices in Mathematics Sciences (Academic Press, New York, 1979).
  • Cvetkovi´c D. M., Doob M., Gutman I. and Torgaˇsev, A. Recent Results in the Theory of Graph Spectra(North-Holland, 1988).
  • Cvetkovi´c D. M., Doob M. and Sachs, H. Spectra of Graphs (Academic Press, New York, 1980). (Second revised ed., Barth, Heidelberg, 1995).
  • Liu, H. and Lu, M. Sharp bounds on the spectral radius and the energy of graphs, MATCH Commun. Math. Comput. Chem. 59, 279–290, 2008.
  • Xu, G.-H. and Xu, C.-Q. Sharp bounds for the spectral radius of digraphs, Linear Algebra Appl. 430, 1607–1612, 2009.
  • Zhang, X.-D. and Li, J.-S. Spectral radius of nonnegative matrices and digraphs, Acta Math. Sin. 18 (2), 293–300, 2002.

IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS

Year 2010, Volume: 39 Issue: 3, 313 - 318, 01.03.2010

Abstract

Let G = (V, E) be a digraph with n vertices and m arcs without loops and multi-arcs. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix. In this note, we obtain two sharp upper and lower bounds on ρ(G). These bounds improve those obtained by G. H. Xu and C.-Q Xu (Sharp bounds for the spectral radius of digraphs, Linear Algebra Appl. 430, 1607–1612, 2009).

References

  • Berman A. and Plemmons R. J. Nonnegative Matrices in Mathematics Sciences (Academic Press, New York, 1979).
  • Cvetkovi´c D. M., Doob M., Gutman I. and Torgaˇsev, A. Recent Results in the Theory of Graph Spectra(North-Holland, 1988).
  • Cvetkovi´c D. M., Doob M. and Sachs, H. Spectra of Graphs (Academic Press, New York, 1980). (Second revised ed., Barth, Heidelberg, 1995).
  • Liu, H. and Lu, M. Sharp bounds on the spectral radius and the energy of graphs, MATCH Commun. Math. Comput. Chem. 59, 279–290, 2008.
  • Xu, G.-H. and Xu, C.-Q. Sharp bounds for the spectral radius of digraphs, Linear Algebra Appl. 430, 1607–1612, 2009.
  • Zhang, X.-D. and Li, J.-S. Spectral radius of nonnegative matrices and digraphs, Acta Math. Sin. 18 (2), 293–300, 2002.
There are 6 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Ş. Burcu Bozkurt This is me

A. Dilek Güngör This is me

Publication Date March 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 3

Cite

APA Bozkurt, Ş. B., & Güngör, A. D. (2010). IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS. Hacettepe Journal of Mathematics and Statistics, 39(3), 313-318.
AMA Bozkurt ŞB, Güngör AD. IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS. Hacettepe Journal of Mathematics and Statistics. March 2010;39(3):313-318.
Chicago Bozkurt, Ş. Burcu, and A. Dilek Güngör. “IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS”. Hacettepe Journal of Mathematics and Statistics 39, no. 3 (March 2010): 313-18.
EndNote Bozkurt ŞB, Güngör AD (March 1, 2010) IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS. Hacettepe Journal of Mathematics and Statistics 39 3 313–318.
IEEE Ş. B. Bozkurt and A. D. Güngör, “IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 3, pp. 313–318, 2010.
ISNAD Bozkurt, Ş. Burcu - Güngör, A. Dilek. “IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS”. Hacettepe Journal of Mathematics and Statistics 39/3 (March 2010), 313-318.
JAMA Bozkurt ŞB, Güngör AD. IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS. Hacettepe Journal of Mathematics and Statistics. 2010;39:313–318.
MLA Bozkurt, Ş. Burcu and A. Dilek Güngör. “IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 3, 2010, pp. 313-8.
Vancouver Bozkurt ŞB, Güngör AD. IMPROVED BOUNDS FOR THE SPECTRAL RADIUS OF DIGRAPHS. Hacettepe Journal of Mathematics and Statistics. 2010;39(3):313-8.