Research Article
BibTex RIS Cite

Bases of [0,1]-matroids

Year 2010, Volume: 39 Issue: 2, 233 - 240, 01.02.2010

Abstract

In this paper, a characterization of [0, 1]-matroids is given. It is proved that a [0, 1]-matroid is equivalent to a hereditary fuzzy pre-matroid, and that a perfect [0, 1]-matroid is equivalent to a Goetschel-Voxman fuzzy matroid. It is proved that there is a one-to-one correspondence between the family of closed perfect [0, 1]-matroids on E and the set of their fuzzy bases.

References

  • Goetschel, R. and Voxman, W. Fuzzy matroids, Fuzzy Sets and Systems 27, 291–302, 1988. [2] Goetschel, R. and Voxman, W. Bases of fuzzy matroids, Fuzzy Sets and Systems 31, 253– 261, 1989.
  • Goetschel, R. and Voxman, W. Fuzzy rank functions, Fuzzy Sets and Systems 42, 245–258, 1991. [4] Novak, L. A. On fuzzy independence set systems, Fuzzy Sets and Systems 91, 365–374, 1997. [5] Novak, L. A. On Goetschel and Voxman fuzzy matroids, Fuzzy Sets and Systems 117, 407– 412, 2001.
  • Oxley, J. G. Matroid Theory (Oxford university press, 1992).
  • Shi, F. -G. A new approach to the fuzzification of matroids, Fuzzy Sets and Systems, 160, 696–705, 2009.
  • Shi, F. -G. (L, M )-fuzzy matroids, Fuzzy Sets and Systems 160, 2387–2400, 2009.
  • Whitney, H. On the abstract properties of linear dependence, Amer. J. Math. 57, 509–533, 1935. [10] Xin, X. and Shi, F. -G. Rank functions for closed and perfect [0, 1]-matroids, Hacettepe J. Math. Stat. 39 (1), 31–39, 2010.
  • Zadeh, L. A. A computational approach to fuzzy quantifiers in natural languages, Comput. Math. Appl. 9, 149–184, 1983.

Bases of [0,1]-matroids

Year 2010, Volume: 39 Issue: 2, 233 - 240, 01.02.2010

Abstract

References

  • Goetschel, R. and Voxman, W. Fuzzy matroids, Fuzzy Sets and Systems 27, 291–302, 1988. [2] Goetschel, R. and Voxman, W. Bases of fuzzy matroids, Fuzzy Sets and Systems 31, 253– 261, 1989.
  • Goetschel, R. and Voxman, W. Fuzzy rank functions, Fuzzy Sets and Systems 42, 245–258, 1991. [4] Novak, L. A. On fuzzy independence set systems, Fuzzy Sets and Systems 91, 365–374, 1997. [5] Novak, L. A. On Goetschel and Voxman fuzzy matroids, Fuzzy Sets and Systems 117, 407– 412, 2001.
  • Oxley, J. G. Matroid Theory (Oxford university press, 1992).
  • Shi, F. -G. A new approach to the fuzzification of matroids, Fuzzy Sets and Systems, 160, 696–705, 2009.
  • Shi, F. -G. (L, M )-fuzzy matroids, Fuzzy Sets and Systems 160, 2387–2400, 2009.
  • Whitney, H. On the abstract properties of linear dependence, Amer. J. Math. 57, 509–533, 1935. [10] Xin, X. and Shi, F. -G. Rank functions for closed and perfect [0, 1]-matroids, Hacettepe J. Math. Stat. 39 (1), 31–39, 2010.
  • Zadeh, L. A. A computational approach to fuzzy quantifiers in natural languages, Comput. Math. Appl. 9, 149–184, 1983.
There are 7 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Chun-e. Huang This is me

Fu-gui Shi This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Huang, C.-e., & Shi, F.-g. (2010). Bases of [0,1]-matroids. Hacettepe Journal of Mathematics and Statistics, 39(2), 233-240.
AMA Huang Ce, Shi Fg. Bases of [0,1]-matroids. Hacettepe Journal of Mathematics and Statistics. February 2010;39(2):233-240.
Chicago Huang, Chun-e., and Fu-gui Shi. “Bases of [0,1]-Matroids”. Hacettepe Journal of Mathematics and Statistics 39, no. 2 (February 2010): 233-40.
EndNote Huang C-e, Shi F-g (February 1, 2010) Bases of [0,1]-matroids. Hacettepe Journal of Mathematics and Statistics 39 2 233–240.
IEEE C.-e. Huang and F.-g. Shi, “Bases of [0,1]-matroids”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 233–240, 2010.
ISNAD Huang, Chun-e. - Shi, Fu-gui. “Bases of [0,1]-Matroids”. Hacettepe Journal of Mathematics and Statistics 39/2 (February 2010), 233-240.
JAMA Huang C-e, Shi F-g. Bases of [0,1]-matroids. Hacettepe Journal of Mathematics and Statistics. 2010;39:233–240.
MLA Huang, Chun-e. and Fu-gui Shi. “Bases of [0,1]-Matroids”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, 2010, pp. 233-40.
Vancouver Huang C-e, Shi F-g. Bases of [0,1]-matroids. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):233-40.