Best Subordinants of the Strong Differential Superordination
Year 2009,
Volume: 38 Issue: 3, 293 - 298, 01.03.2009
Gheorghe Oros
A.o. Taut
References
- Antonino, Jos´e A. and Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations, 114, 101–105, 1994.
- Miller, S. S. and Mocanu, P. T. Differential subordinations. Theory and applications (Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000).
- Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Vari- ables 48 (10), 815–826, 2003.
- Oros, G. I. and Oros, Gh. Strong differential subordination, Turkish Journal of Mathematics 33(3), 249–257, 2009.
- Oros, G. I. Strong differential superordination, Acta Universitatis Apulensis 19, 101–106, 2009.
- Oros, G. I. Sufficient conditions for univalence obtained by using first order nonlinear strong differential subordinations(to appear).
- Oros, G. I. Sufficient conditions for univalence obtained by using second order linear strong differential subordinations, Turkish Journal of Mathematics (accepted).
- Oros, G. I. and Oros, Gh. Second order nonlinear strong differential subordinations, Bull. Belg. Math. Soc. Simon Stevin 16, 171–178, 2009.
Best Subordinants of the Strong Differential Superordination
Year 2009,
Volume: 38 Issue: 3, 293 - 298, 01.03.2009
Gheorghe Oros
A.o. Taut
References
- Antonino, Jos´e A. and Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations, 114, 101–105, 1994.
- Miller, S. S. and Mocanu, P. T. Differential subordinations. Theory and applications (Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000).
- Miller, S. S. and Mocanu, P. T. Subordinants of differential superordinations, Complex Vari- ables 48 (10), 815–826, 2003.
- Oros, G. I. and Oros, Gh. Strong differential subordination, Turkish Journal of Mathematics 33(3), 249–257, 2009.
- Oros, G. I. Strong differential superordination, Acta Universitatis Apulensis 19, 101–106, 2009.
- Oros, G. I. Sufficient conditions for univalence obtained by using first order nonlinear strong differential subordinations(to appear).
- Oros, G. I. Sufficient conditions for univalence obtained by using second order linear strong differential subordinations, Turkish Journal of Mathematics (accepted).
- Oros, G. I. and Oros, Gh. Second order nonlinear strong differential subordinations, Bull. Belg. Math. Soc. Simon Stevin 16, 171–178, 2009.
There are 8 citations in total.