BibTex RIS Cite

Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix

Year 2009, Volume: 38 Issue: 3, - 1, 01.03.2009

References

  • Cheon, G. S. and Kim, J. S. Stirling matrix via Pascal matrix, Linear Algebra Appl. 329, 49–59, 2001.
  • Kilic, E. and Stanica, P. Factorizations and representations of second linear recurrences with incides in aritmetic progressions, Bol. Soc. Mat. Mexicana (in press).
  • Kilic, E. and Tasci, D. The linear algebra of the Pell matrix, Bol. Soc. Mat. Mexicana 2 (11), 163–174, 2005.
  • Lawden, G. H. Pascal matrices, Mathematical Gazette 56 (398), 325–327, 1972.
  • Lee, G. Y., Kim, J. S. and Lee, S. G. Factorizations and eigenvalues of Fibonacci and sym- metric Fibonacci matrices, Fibonacci Quart. 40 (3), 203–211, 2002.
  • Stanica, P. Cholesky factorizations of matrices associated with r th order recurrent sequences, Electron. J. Combin. Number Theory 5 (2), #A16, 2005.
  • Zhizheng, Z. and Wang, X. A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math. 155, 2371–2376, 2007.

Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix

Year 2009, Volume: 38 Issue: 3, - 1, 01.03.2009

References

  • Cheon, G. S. and Kim, J. S. Stirling matrix via Pascal matrix, Linear Algebra Appl. 329, 49–59, 2001.
  • Kilic, E. and Stanica, P. Factorizations and representations of second linear recurrences with incides in aritmetic progressions, Bol. Soc. Mat. Mexicana (in press).
  • Kilic, E. and Tasci, D. The linear algebra of the Pell matrix, Bol. Soc. Mat. Mexicana 2 (11), 163–174, 2005.
  • Lawden, G. H. Pascal matrices, Mathematical Gazette 56 (398), 325–327, 1972.
  • Lee, G. Y., Kim, J. S. and Lee, S. G. Factorizations and eigenvalues of Fibonacci and sym- metric Fibonacci matrices, Fibonacci Quart. 40 (3), 203–211, 2002.
  • Stanica, P. Cholesky factorizations of matrices associated with r th order recurrent sequences, Electron. J. Combin. Number Theory 5 (2), #A16, 2005.
  • Zhizheng, Z. and Wang, X. A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math. 155, 2371–2376, 2007.
There are 7 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

E. Kiliç This is me

N. Ömür This is me

G. Tatar This is me

Y.t. Ulutas This is me

Publication Date March 1, 2009
Published in Issue Year 2009 Volume: 38 Issue: 3

Cite

APA Kiliç, E., Ömür, N., Tatar, G., Ulutas, Y. (2009). Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix. Hacettepe Journal of Mathematics and Statistics, 38(3), 1.
AMA Kiliç E, Ömür N, Tatar G, Ulutas Y. Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix. Hacettepe Journal of Mathematics and Statistics. March 2009;38(3):1.
Chicago Kiliç, E., N. Ömür, G. Tatar, and Y.t. Ulutas. “Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix”. Hacettepe Journal of Mathematics and Statistics 38, no. 3 (March 2009): 1.
EndNote Kiliç E, Ömür N, Tatar G, Ulutas Y (March 1, 2009) Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix. Hacettepe Journal of Mathematics and Statistics 38 3 1.
IEEE E. Kiliç, N. Ömür, G. Tatar, and Y. Ulutas, “Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix”, Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 3, p. 1, 2009.
ISNAD Kiliç, E. et al. “Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix”. Hacettepe Journal of Mathematics and Statistics 38/3 (March 2009), 1.
JAMA Kiliç E, Ömür N, Tatar G, Ulutas Y. Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix. Hacettepe Journal of Mathematics and Statistics. 2009;38:1.
MLA Kiliç, E. et al. “Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix”. Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 3, 2009, p. 1.
Vancouver Kiliç E, Ömür N, Tatar G, Ulutas Y. Factorizations of the Pascal Matrix via a Generalized Second Order Recurrent Matrix. Hacettepe Journal of Mathematics and Statistics. 2009;38(3):1.