Research Article
BibTex RIS Cite

Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz

Year 2009, Volume: 38 Issue: 2, 153 - 159, 01.02.2009

Abstract

In this article, using the notion of statistical convergence, we relax the hypotheses of the well-known theorems from classical complex analysis, such as Weierstrass’ Theorem, Montel’s Theorem and Hurwitz’s Theorem. So, we obtain more powerful results than the classical ones in complex analysis.

References

  • Connor, J. S. The statistical and p-Ces´aro convergence of sequences, Analysis 8, 47–63, Demirci, K. A criterion for A-statistical convergence, Indian J. Pure Appl. Math. 29, 559– , 1998.
  • Fast, H. Sur la convergence statistique, Colloq. Math. 2, 241–244, 1951.
  • Freedman, A. R. and Sember, J. J. Densities and summability, Pacific J. Math. 95, 293–305, Fridy, J. A. On statistical convergence, Analysis 5, 301–313, 1985.
  • Fridy, J. A. Statistical limit points, Proc. Amer. Math. Soc. 118, 1187–1192, 1993.
  • Fridy, J. A. and Orhan, C. Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125, 3625–3631, 1997.
  • Hardy, G. H. Divergent Series (Oxford Univ. Press, London, 1949).
  • Kolk, E. Matrix summability of statistically convergent sequences, Analysis 13, 77–83, 1993.
  • Miller, H. I. A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347, 1811–1819, 1995.
  • Mursaleen, M. and Edely, Osama H. H. Generalized statistical convergence, Inform. Sci. 162, –294, 2004.
  • Narasimhan, R. Complex Analysis in One Variable (Birkh¨auser, Boston, 1985).
  • Sava¸s, E. On strong almost A-summability with respect to a modulus and statistical conver- gence, Indian J. Pure Appl. Math. 23, 217–222, 1992.

STRONG VERSIONS OF THE THEOREMS OF WEIERSTRASS, MONTEL AND HURWITZ

Year 2009, Volume: 38 Issue: 2, 153 - 159, 01.02.2009

Abstract

References

  • Connor, J. S. The statistical and p-Ces´aro convergence of sequences, Analysis 8, 47–63, Demirci, K. A criterion for A-statistical convergence, Indian J. Pure Appl. Math. 29, 559– , 1998.
  • Fast, H. Sur la convergence statistique, Colloq. Math. 2, 241–244, 1951.
  • Freedman, A. R. and Sember, J. J. Densities and summability, Pacific J. Math. 95, 293–305, Fridy, J. A. On statistical convergence, Analysis 5, 301–313, 1985.
  • Fridy, J. A. Statistical limit points, Proc. Amer. Math. Soc. 118, 1187–1192, 1993.
  • Fridy, J. A. and Orhan, C. Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125, 3625–3631, 1997.
  • Hardy, G. H. Divergent Series (Oxford Univ. Press, London, 1949).
  • Kolk, E. Matrix summability of statistically convergent sequences, Analysis 13, 77–83, 1993.
  • Miller, H. I. A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347, 1811–1819, 1995.
  • Mursaleen, M. and Edely, Osama H. H. Generalized statistical convergence, Inform. Sci. 162, –294, 2004.
  • Narasimhan, R. Complex Analysis in One Variable (Birkh¨auser, Boston, 1985).
  • Sava¸s, E. On strong almost A-summability with respect to a modulus and statistical conver- gence, Indian J. Pure Appl. Math. 23, 217–222, 1992.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

O. Duman This is me

Publication Date February 1, 2009
Published in Issue Year 2009 Volume: 38 Issue: 2

Cite

APA Duman, O. (2009). Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz. Hacettepe Journal of Mathematics and Statistics, 38(2), 153-159.
AMA Duman O. Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz. Hacettepe Journal of Mathematics and Statistics. February 2009;38(2):153-159.
Chicago Duman, O. “Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz”. Hacettepe Journal of Mathematics and Statistics 38, no. 2 (February 2009): 153-59.
EndNote Duman O (February 1, 2009) Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz. Hacettepe Journal of Mathematics and Statistics 38 2 153–159.
IEEE O. Duman, “Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz”, Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 2, pp. 153–159, 2009.
ISNAD Duman, O. “Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz”. Hacettepe Journal of Mathematics and Statistics 38/2 (February 2009), 153-159.
JAMA Duman O. Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz. Hacettepe Journal of Mathematics and Statistics. 2009;38:153–159.
MLA Duman, O. “Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz”. Hacettepe Journal of Mathematics and Statistics, vol. 38, no. 2, 2009, pp. 153-9.
Vancouver Duman O. Strong Versions of the Theorems of Weierstrass, Montel and Hurwitz. Hacettepe Journal of Mathematics and Statistics. 2009;38(2):153-9.