Research Article
BibTex RIS Cite

FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION

Year 2008, Volume: 37 Issue: 2, 69 - 79, 01.02.2008

Abstract

References

  • Amiraliyev, G. M. and Mamedov, Y. D. Difference scheme on the uniform mesh for singular perturbed pseudoparabolic equations. Turk. J. of Mathematics 19, 207–222, 1995.
  • Chandirov, G. I. On mixed problem for a class of quasilinear hyperbolic equation (PhD. Thesis, Tibilisi, 1970).
  • Colton, D. The exterior Dirichlet problem for ∆3ut−ut+ ∆3u= 0. Appl. Anal. 7, 207–202, 1978.
  • Colton, D. and Wimp, J. Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperature, J. Math. Anal. Appl. 2, 411–418, 1979.
  • Conzalez-Velasco, E. A. Fourier Analysis and Boundary Value Problems (Academic Press, New York, 1995).
  • Halilov, H. On mixed problem for a class of quasilinear pseudoparabolic equation. Appl. Anal. 75 (1-2), 61–71, 2000.
  • Halilov, H. On mixed problem for a class of quasilinear pseudo - parabolic equations. Journal of Kocaeli Univ., Pure and Applied Math. Sec. 3, 1–7, 1996.
  • Hasanov, K. K. On solution of mixed problem for a quasilinear hiperbolic and parabolic equation(PhD. Thesis, Baku, 1961). [9] IL’in, V. A. Solvability of mixed problem for hyperbolic and parabolic equation, Uspekhi Math. Nauk, 15:2, 92, 97–154, 1960. [10] Ladyzhenskaya, D. A. Boundary Value Problems of Mathematical Physics (Springer, New York, 1985).
  • Rao, V. R. and Ting, T. W. F Initial-value problems for pseudoparabolic partial differential equations, Indiana Univ. Math. J. 23, 131–153, 1973.
  • Rundell, W. The solution of initial- boundary value problems for pseudoparabolic partial differential equations, Proc. Roy. Soc. Edin. Sect. A. 74, 311–326, 1975.

FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION

Year 2008, Volume: 37 Issue: 2, 69 - 79, 01.02.2008

Abstract

A multidimensional mixed problem with Neuman type periodic boundary condition is studied for the quasilinear parabolic equation ∂u
∂t −
a
2 ∂
2u
∂x2 = f(t, x, u). The existence, uniqueness and also continuity of
the weak generalized solution is proved.

References

  • Amiraliyev, G. M. and Mamedov, Y. D. Difference scheme on the uniform mesh for singular perturbed pseudoparabolic equations. Turk. J. of Mathematics 19, 207–222, 1995.
  • Chandirov, G. I. On mixed problem for a class of quasilinear hyperbolic equation (PhD. Thesis, Tibilisi, 1970).
  • Colton, D. The exterior Dirichlet problem for ∆3ut−ut+ ∆3u= 0. Appl. Anal. 7, 207–202, 1978.
  • Colton, D. and Wimp, J. Asymptotic behaviour of the fundamental solution to the equation of heat conduction in two temperature, J. Math. Anal. Appl. 2, 411–418, 1979.
  • Conzalez-Velasco, E. A. Fourier Analysis and Boundary Value Problems (Academic Press, New York, 1995).
  • Halilov, H. On mixed problem for a class of quasilinear pseudoparabolic equation. Appl. Anal. 75 (1-2), 61–71, 2000.
  • Halilov, H. On mixed problem for a class of quasilinear pseudo - parabolic equations. Journal of Kocaeli Univ., Pure and Applied Math. Sec. 3, 1–7, 1996.
  • Hasanov, K. K. On solution of mixed problem for a quasilinear hiperbolic and parabolic equation(PhD. Thesis, Baku, 1961). [9] IL’in, V. A. Solvability of mixed problem for hyperbolic and parabolic equation, Uspekhi Math. Nauk, 15:2, 92, 97–154, 1960. [10] Ladyzhenskaya, D. A. Boundary Value Problems of Mathematical Physics (Springer, New York, 1985).
  • Rao, V. R. and Ting, T. W. F Initial-value problems for pseudoparabolic partial differential equations, Indiana Univ. Math. J. 23, 131–153, 1973.
  • Rundell, W. The solution of initial- boundary value problems for pseudoparabolic partial differential equations, Proc. Roy. Soc. Edin. Sect. A. 74, 311–326, 1975.
There are 10 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

I. Ciftci This is me

H. Halilov This is me

Publication Date February 1, 2008
Published in Issue Year 2008 Volume: 37 Issue: 2

Cite

APA Ciftci, I., & Halilov, H. (2008). FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION. Hacettepe Journal of Mathematics and Statistics, 37(2), 69-79.
AMA Ciftci I, Halilov H. FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION. Hacettepe Journal of Mathematics and Statistics. February 2008;37(2):69-79.
Chicago Ciftci, I., and H. Halilov. “FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION”. Hacettepe Journal of Mathematics and Statistics 37, no. 2 (February 2008): 69-79.
EndNote Ciftci I, Halilov H (February 1, 2008) FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION. Hacettepe Journal of Mathematics and Statistics 37 2 69–79.
IEEE I. Ciftci and H. Halilov, “FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION”, Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 2, pp. 69–79, 2008.
ISNAD Ciftci, I. - Halilov, H. “FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION”. Hacettepe Journal of Mathematics and Statistics 37/2 (February 2008), 69-79.
JAMA Ciftci I, Halilov H. FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION. Hacettepe Journal of Mathematics and Statistics. 2008;37:69–79.
MLA Ciftci, I. and H. Halilov. “FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION”. Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 2, 2008, pp. 69-79.
Vancouver Ciftci I, Halilov H. FOURIER METHOD FOR A QUASILINEAR PARABOLIC EQUATION WITH PERIODIC BOUNDARY CONDITION. Hacettepe Journal of Mathematics and Statistics. 2008;37(2):69-7.