BibTex RIS Cite

On the Invariants of Time-like Dual Curves

Year 2008, Volume: 37 Issue: 2, 129 - 133, 01.02.2008

References

  • Baky, R. A. A. An explicit characterization of dual spherical curves, Commun. Fac. Sci. Univ. Ank. Series A. 51 (2), 1–9, 2002.
  • Chen, B. Y. When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mounthly 110 (2), 147–152, 2003.
  • Chen, B. Y. and Dillen, F. Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica 22, 77–90, 2005.
  • Clifford, W. K. Preliminary sketch of biquaternions, Proceedings of London Math. Soc. 4, –395, 1873.
  • Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M. Some characterizations of rectifying curves in the Minkowski 3-Space, Novi Sad J. Math. 33, 23–32, 2003.
  • K¨ose, ¨O., Nizamo˘glu, S¸. and Sezer, M. An explicit characterization of dual spherical curve, Do˘ga Mat. 12 (3), 105–113, 1988.
  • Petrovic-Torgasev, M. and Sucurovic, E. W -curves in Minkowski space-time, Novi Sad J. Math. 32 (2), 55–65, 2002.
  • Sezer, M., K¨ose, ¨O. and Nizamo˘glu, S¸. A criterion for a ruled surface to be closed, Do˘ga Mat. 14 (1), 39–47, 1990.
  • U˘gurlu, H. and C¸ alı¸skan, A. The study mapping for directed space-like and time-like lines in Minkowski 3-Space R3, Math. Comput. Appl. 1 (2), 142–148, 1996.
  • Veldkamp, G. R. On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics, Mech. Mach. Theory 11, 141–156, 1976.
  • Yang, A. T. Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, (Doctoral Dissertation, Columbia University, 1963).
  • Yucesan, A., Coken, A. C. and Ayyildiz, N. On the dual Darboux rotation axis of the time- like dual space curve, Balkan J. Geom. Appl. 7 (2), 137–142, 2002.

On the Invariants of Time-like Dual Curves

Year 2008, Volume: 37 Issue: 2, 129 - 133, 01.02.2008

References

  • Baky, R. A. A. An explicit characterization of dual spherical curves, Commun. Fac. Sci. Univ. Ank. Series A. 51 (2), 1–9, 2002.
  • Chen, B. Y. When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mounthly 110 (2), 147–152, 2003.
  • Chen, B. Y. and Dillen, F. Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica 22, 77–90, 2005.
  • Clifford, W. K. Preliminary sketch of biquaternions, Proceedings of London Math. Soc. 4, –395, 1873.
  • Ilarslan, K., Nesovic, E. and Petrovic-Torgasev, M. Some characterizations of rectifying curves in the Minkowski 3-Space, Novi Sad J. Math. 33, 23–32, 2003.
  • K¨ose, ¨O., Nizamo˘glu, S¸. and Sezer, M. An explicit characterization of dual spherical curve, Do˘ga Mat. 12 (3), 105–113, 1988.
  • Petrovic-Torgasev, M. and Sucurovic, E. W -curves in Minkowski space-time, Novi Sad J. Math. 32 (2), 55–65, 2002.
  • Sezer, M., K¨ose, ¨O. and Nizamo˘glu, S¸. A criterion for a ruled surface to be closed, Do˘ga Mat. 14 (1), 39–47, 1990.
  • U˘gurlu, H. and C¸ alı¸skan, A. The study mapping for directed space-like and time-like lines in Minkowski 3-Space R3, Math. Comput. Appl. 1 (2), 142–148, 1996.
  • Veldkamp, G. R. On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics, Mech. Mach. Theory 11, 141–156, 1976.
  • Yang, A. T. Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, (Doctoral Dissertation, Columbia University, 1963).
  • Yucesan, A., Coken, A. C. and Ayyildiz, N. On the dual Darboux rotation axis of the time- like dual space curve, Balkan J. Geom. Appl. 7 (2), 137–142, 2002.
There are 12 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

M. Turgut This is me

Publication Date February 1, 2008
Published in Issue Year 2008 Volume: 37 Issue: 2

Cite

APA Turgut, M. (2008). On the Invariants of Time-like Dual Curves. Hacettepe Journal of Mathematics and Statistics, 37(2), 129-133.
AMA Turgut M. On the Invariants of Time-like Dual Curves. Hacettepe Journal of Mathematics and Statistics. February 2008;37(2):129-133.
Chicago Turgut, M. “On the Invariants of Time-Like Dual Curves”. Hacettepe Journal of Mathematics and Statistics 37, no. 2 (February 2008): 129-33.
EndNote Turgut M (February 1, 2008) On the Invariants of Time-like Dual Curves. Hacettepe Journal of Mathematics and Statistics 37 2 129–133.
IEEE M. Turgut, “On the Invariants of Time-like Dual Curves”, Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 2, pp. 129–133, 2008.
ISNAD Turgut, M. “On the Invariants of Time-Like Dual Curves”. Hacettepe Journal of Mathematics and Statistics 37/2 (February 2008), 129-133.
JAMA Turgut M. On the Invariants of Time-like Dual Curves. Hacettepe Journal of Mathematics and Statistics. 2008;37:129–133.
MLA Turgut, M. “On the Invariants of Time-Like Dual Curves”. Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 2, 2008, pp. 129-33.
Vancouver Turgut M. On the Invariants of Time-like Dual Curves. Hacettepe Journal of Mathematics and Statistics. 2008;37(2):129-33.