Adamidis, K. and Loukas, S. A life time distribution with decreasing failure rate, Statist. Probab. Lett. 39, 35–42, 1998.
Adamidis, K. An EM algorithm for estimating negative binomial parameters, Austral. & New Zealand J. Statist. 41 (2), 213–221, 1999.
Adamidis, K., Dimitrakopoulou, T. and Loukas, S. On an extension of the exponentialgeometric distribution, Statist. Probab. Lett. 73, 259–269, 2005.
Bairamov, I and Eryılmaz, S. Spacings, exceedances and concomitants in progressive Type II censoring scheme, J. Statist. Plann. Infer. 136, 527–536, 2006.
Balakrishnan, N. and Sandhu, R. A. Best linear unbiased and maximum likelihood estimation for exponential distributions under general progressive type-II censored samples, Sankhya-B 58 (1), 1–9, 1996.
Balakrishnan, N. and Aggarwala, R. Progressive Censoring:Theory, Methods and Applications (Birkh¨auser, Boston, 2000).
Balakrishnan N. and Lin, C. -T. Exact linear inference and prediction for exponential distributions based on general progressively Type-II censored samples, J. Statist. Comput. Simul. 72, 677–686, 2002.
Balakrishnan N., Kannan, N., Lin, C.-T. and Ng, H. K. T. Point and interval estimation for Gaussian distribution, based on progressively Type II censored samples, IEEE Trans. Reliab. 52, 90–95, 2003.
Balasooriya, U., Saw, S. L. C. and Gadag, V. Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42, 160–168, 2000.
Cohen, A. C. Progressively censored samples in life testing, Technometrics 5, 327–339, 1963.
Dempster, A.P., Laird, N. M. and Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc. Ser. B 39, 1-38, 1977.
Fernandez A. J. On estimating exponential parameters with general Type-II progressive censoring, J. Statist. Plann. Infer. 121, 135–14 2004.
Karlis, D. An EM algorithm for multivariate Poisson distribution and related models, J. App. Statist. 30 (1), 63–77, 2003.
Ku¸s, C. 2006. A new lifetime distribution, Comp. Statist.& Data Analy., in press.
Little, R. J. A. and Rubin, D. B. Incomplete data, In: Kotz, S., Johnson, N. L. (Eds.), Encyclopedia of Statistical Sciences, Vol. 4 (Wiley, New York, pp. 46–53, 1983).
Mann, N. R. Best linear invariant estimation for Weibull parameters under progressive censoring, Technometrics 13, 521–533, 1971.
McLachlan, G. J., Krishnan, T. The EM Algorithm and Extensions (Wiley, New York, 1997).
Nelson, W. Applied Life Data Analysis (Wiley, New York, 1982).
Ng, H. K. T., Chan, P. S. and Balakrishnan N. Estimation of parameters from progressively censored data using EM algorithm, Comp. Statist.&Data Analy. 39, 371–386, 2002.
Thomas, D. R. and Wilson, W. M. Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from Type-II progressively censored samples, Technometrics 14, 679–691, 1972.
Viveros, R. and Balakrishnan, N. Interval estimation of parameters of life from progressively censored data, Technometrics 36, 84–91, 1994.
Wu S. -J. Estimation of the parameters of the Weibull distribution with progressively censored data. J. Japan Statist. Soc. 32 (2), 155–163, 2002.
Wu S. -J., Chang, C. -T. and Tsai T.-R. Point and interval estimations for the Gompertz distribution under progressive Type-II censoring, METRON - Int. J.Statist. vol. LXI (3), 403–418, 2003.
Wong, J. Y. Simultaneously estimating the three Weibull parameters from progressively censored samples, Microelect. Reliab. 33, 2217-2224, 1993.
Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm
Year 2006,
Volume: 35 Issue: 2, 203 - 211, 01.02.2006
Adamidis, K. and Loukas, S. A life time distribution with decreasing failure rate, Statist. Probab. Lett. 39, 35–42, 1998.
Adamidis, K. An EM algorithm for estimating negative binomial parameters, Austral. & New Zealand J. Statist. 41 (2), 213–221, 1999.
Adamidis, K., Dimitrakopoulou, T. and Loukas, S. On an extension of the exponentialgeometric distribution, Statist. Probab. Lett. 73, 259–269, 2005.
Bairamov, I and Eryılmaz, S. Spacings, exceedances and concomitants in progressive Type II censoring scheme, J. Statist. Plann. Infer. 136, 527–536, 2006.
Balakrishnan, N. and Sandhu, R. A. Best linear unbiased and maximum likelihood estimation for exponential distributions under general progressive type-II censored samples, Sankhya-B 58 (1), 1–9, 1996.
Balakrishnan, N. and Aggarwala, R. Progressive Censoring:Theory, Methods and Applications (Birkh¨auser, Boston, 2000).
Balakrishnan N. and Lin, C. -T. Exact linear inference and prediction for exponential distributions based on general progressively Type-II censored samples, J. Statist. Comput. Simul. 72, 677–686, 2002.
Balakrishnan N., Kannan, N., Lin, C.-T. and Ng, H. K. T. Point and interval estimation for Gaussian distribution, based on progressively Type II censored samples, IEEE Trans. Reliab. 52, 90–95, 2003.
Balasooriya, U., Saw, S. L. C. and Gadag, V. Progressively censored reliability sampling plans for the Weibull distribution, Technometrics 42, 160–168, 2000.
Cohen, A. C. Progressively censored samples in life testing, Technometrics 5, 327–339, 1963.
Dempster, A.P., Laird, N. M. and Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Roy. Statist. Soc. Ser. B 39, 1-38, 1977.
Fernandez A. J. On estimating exponential parameters with general Type-II progressive censoring, J. Statist. Plann. Infer. 121, 135–14 2004.
Karlis, D. An EM algorithm for multivariate Poisson distribution and related models, J. App. Statist. 30 (1), 63–77, 2003.
Ku¸s, C. 2006. A new lifetime distribution, Comp. Statist.& Data Analy., in press.
Little, R. J. A. and Rubin, D. B. Incomplete data, In: Kotz, S., Johnson, N. L. (Eds.), Encyclopedia of Statistical Sciences, Vol. 4 (Wiley, New York, pp. 46–53, 1983).
Mann, N. R. Best linear invariant estimation for Weibull parameters under progressive censoring, Technometrics 13, 521–533, 1971.
McLachlan, G. J., Krishnan, T. The EM Algorithm and Extensions (Wiley, New York, 1997).
Nelson, W. Applied Life Data Analysis (Wiley, New York, 1982).
Ng, H. K. T., Chan, P. S. and Balakrishnan N. Estimation of parameters from progressively censored data using EM algorithm, Comp. Statist.&Data Analy. 39, 371–386, 2002.
Thomas, D. R. and Wilson, W. M. Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from Type-II progressively censored samples, Technometrics 14, 679–691, 1972.
Viveros, R. and Balakrishnan, N. Interval estimation of parameters of life from progressively censored data, Technometrics 36, 84–91, 1994.
Wu S. -J. Estimation of the parameters of the Weibull distribution with progressively censored data. J. Japan Statist. Soc. 32 (2), 155–163, 2002.
Wu S. -J., Chang, C. -T. and Tsai T.-R. Point and interval estimations for the Gompertz distribution under progressive Type-II censoring, METRON - Int. J.Statist. vol. LXI (3), 403–418, 2003.
Wong, J. Y. Simultaneously estimating the three Weibull parameters from progressively censored samples, Microelect. Reliab. 33, 2217-2224, 1993.
Kus, C., & Kaya, M. F. (2006). Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm. Hacettepe Journal of Mathematics and Statistics, 35(2), 203-211.
AMA
Kus C, Kaya MF. Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm. Hacettepe Journal of Mathematics and Statistics. February 2006;35(2):203-211.
Chicago
Kus, C., and M. F. Kaya. “Estimation of Parameters of the Loglogistic Distribution Based on Progressive Censoring Using the EM Algorithm”. Hacettepe Journal of Mathematics and Statistics 35, no. 2 (February 2006): 203-11.
EndNote
Kus C, Kaya MF (February 1, 2006) Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm. Hacettepe Journal of Mathematics and Statistics 35 2 203–211.
IEEE
C. Kus and M. F. Kaya, “Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm”, Hacettepe Journal of Mathematics and Statistics, vol. 35, no. 2, pp. 203–211, 2006.
ISNAD
Kus, C. - Kaya, M. F. “Estimation of Parameters of the Loglogistic Distribution Based on Progressive Censoring Using the EM Algorithm”. Hacettepe Journal of Mathematics and Statistics 35/2 (February 2006), 203-211.
JAMA
Kus C, Kaya MF. Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm. Hacettepe Journal of Mathematics and Statistics. 2006;35:203–211.
MLA
Kus, C. and M. F. Kaya. “Estimation of Parameters of the Loglogistic Distribution Based on Progressive Censoring Using the EM Algorithm”. Hacettepe Journal of Mathematics and Statistics, vol. 35, no. 2, 2006, pp. 203-11.
Vancouver
Kus C, Kaya MF. Estimation of Parameters of the Loglogistic Distribution based on Progressive Censoring using the EM Algorithm. Hacettepe Journal of Mathematics and Statistics. 2006;35(2):203-11.