Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 4, 945 - 955, 15.08.2023
https://doi.org/10.15672/hujms.1153572

Abstract

References

  • [1] G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, 1999.
  • [2] M.A. Chaudhry and S.M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55, 99–124, 1994.
  • [3] M.A. Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78, 19–32, 1997.
  • [4] M.A. Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended Hypergeometric and Confluent Hypergeometric functions, Appl. Math. Comput. 159, 589–602, 2004.
  • [5] J. Choi, A.K Rathie and R.K. Parmar, Extension of extended beta , hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2), 357–385, 2014.
  • [6] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, 2014.
  • [7] M. Ghayasuddin and N.U. Khan, Remarks on extended Gauss hypergeometric functions, Acta Universitatis Apulensis 49, 1–13, 2017.
  • [8] N.U. Khan and S. Husain, A note on extended beta function inolving generalized Mittag-Leffler function and its applications, TWMS J. Appl. Eng. Math. 12 (1), 71- 81, 2022.
  • [9] N.U. Khan, S. Husain, T. Usman and S. Araci, Results Concerning the Analysis of Multi-Index Whittaker Function, Journal of Mathematics Vol. 2022, Article ID 3828104, 2022. https://doi.org/10.1155/2022/3828104
  • [10] N.U. Khan, T. Usman and M. Aman, Extended Beta, Hypergeometric and confluent Hypergeometric functions, Transactions issues Mathematics series of physicaltechnical Mathematics science Azerbaijan National Academy of Science 39(1), 83–97, 2019.
  • [11] N.U. Khan, T. Usman and M. Aman, Extended Beta, Hypergeometric and Confluent Hypergeometric Functions Via Multi-index Mittag-Leffler Function, Proceedings of the Jangjeon Mathematical Society 25 (1), 43-58, 2022.
  • [12] E. Özerjin, M.A. Özarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235, 4601–4610, 2011.
  • [13] M. Raïssouli and M. Chergui, On a new parametrized Beta functions, Proceedings of the Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan 48 (1), 2022.
  • [14] A. Wiman, Uber den fundamental Satz in der Theorie der Funktionen $E_{\aleph}(z)$, Acta Math. 29, 191-201, 1905.

A novel kind of beta logarithmic function and their properties

Year 2023, Volume: 52 Issue: 4, 945 - 955, 15.08.2023
https://doi.org/10.15672/hujms.1153572

Abstract

The main objective is to introduce a novel kind of beta function known as the beta logarithmic function using extended beta functions and logarithmic mean. Further, we study its essential properties and investigate various formulas of beta logarithmic functions such as integral representation, summation formula, transform formula and their statistical properties. Based on this concept, we introduce new hypergeometric and confluent hypergeometric functions and study their properties.

References

  • [1] G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, 1999.
  • [2] M.A. Chaudhry and S.M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55, 99–124, 1994.
  • [3] M.A. Chaudhry, A. Qadir, M. Rafique and S.M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78, 19–32, 1997.
  • [4] M.A. Chaudhry, A. Qadir, H.M. Srivastava and R.B. Paris, Extended Hypergeometric and Confluent Hypergeometric functions, Appl. Math. Comput. 159, 589–602, 2004.
  • [5] J. Choi, A.K Rathie and R.K. Parmar, Extension of extended beta , hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2), 357–385, 2014.
  • [6] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, 2014.
  • [7] M. Ghayasuddin and N.U. Khan, Remarks on extended Gauss hypergeometric functions, Acta Universitatis Apulensis 49, 1–13, 2017.
  • [8] N.U. Khan and S. Husain, A note on extended beta function inolving generalized Mittag-Leffler function and its applications, TWMS J. Appl. Eng. Math. 12 (1), 71- 81, 2022.
  • [9] N.U. Khan, S. Husain, T. Usman and S. Araci, Results Concerning the Analysis of Multi-Index Whittaker Function, Journal of Mathematics Vol. 2022, Article ID 3828104, 2022. https://doi.org/10.1155/2022/3828104
  • [10] N.U. Khan, T. Usman and M. Aman, Extended Beta, Hypergeometric and confluent Hypergeometric functions, Transactions issues Mathematics series of physicaltechnical Mathematics science Azerbaijan National Academy of Science 39(1), 83–97, 2019.
  • [11] N.U. Khan, T. Usman and M. Aman, Extended Beta, Hypergeometric and Confluent Hypergeometric Functions Via Multi-index Mittag-Leffler Function, Proceedings of the Jangjeon Mathematical Society 25 (1), 43-58, 2022.
  • [12] E. Özerjin, M.A. Özarslan and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235, 4601–4610, 2011.
  • [13] M. Raïssouli and M. Chergui, On a new parametrized Beta functions, Proceedings of the Institute of Mathematics and Mechanics National Academy of Sciences of Azerbaijan 48 (1), 2022.
  • [14] A. Wiman, Uber den fundamental Satz in der Theorie der Funktionen $E_{\aleph}(z)$, Acta Math. 29, 191-201, 1905.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nabiullah Khan 0000-0003-0389-7899

Saddam Husain 0000-0002-1852-4748

Owais Khan 0000-0003-1565-4122

Publication Date August 15, 2023
Published in Issue Year 2023 Volume: 52 Issue: 4

Cite

APA Khan, N., Husain, S., & Khan, O. (2023). A novel kind of beta logarithmic function and their properties. Hacettepe Journal of Mathematics and Statistics, 52(4), 945-955. https://doi.org/10.15672/hujms.1153572
AMA Khan N, Husain S, Khan O. A novel kind of beta logarithmic function and their properties. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):945-955. doi:10.15672/hujms.1153572
Chicago Khan, Nabiullah, Saddam Husain, and Owais Khan. “A Novel Kind of Beta Logarithmic Function and Their Properties”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 945-55. https://doi.org/10.15672/hujms.1153572.
EndNote Khan N, Husain S, Khan O (August 1, 2023) A novel kind of beta logarithmic function and their properties. Hacettepe Journal of Mathematics and Statistics 52 4 945–955.
IEEE N. Khan, S. Husain, and O. Khan, “A novel kind of beta logarithmic function and their properties”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 945–955, 2023, doi: 10.15672/hujms.1153572.
ISNAD Khan, Nabiullah et al. “A Novel Kind of Beta Logarithmic Function and Their Properties”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 945-955. https://doi.org/10.15672/hujms.1153572.
JAMA Khan N, Husain S, Khan O. A novel kind of beta logarithmic function and their properties. Hacettepe Journal of Mathematics and Statistics. 2023;52:945–955.
MLA Khan, Nabiullah et al. “A Novel Kind of Beta Logarithmic Function and Their Properties”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 945-5, doi:10.15672/hujms.1153572.
Vancouver Khan N, Husain S, Khan O. A novel kind of beta logarithmic function and their properties. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):945-5.