Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 4, 896 - 906, 15.08.2023
https://doi.org/10.15672/hujms.1205441

Abstract

References

  • [1] R. Brown, Topology and Groupoids. Deganwy, United Kingdom: BookSurge LLC, 2006.
  • [2] R. Brown and G. Danesh-Naruie,Topological Fundamental Groupoid as Topological Groupoid, Proc. Edinburgh Math. Soc. 19, 237–244, 1975.
  • [3] R. Brown and J.P.L. Hardy,Topological groupoid: I. Universal constructions, Math. Nachr. 71 (1), 273–286, 1976.
  • [4] N. Brodskiy, J. Dydac, B. Labuz, A. Mitra, Covering maps for locally path-connected spaces, Fundam. Math. 218, 13–46, 2012.
  • [5] P. J. Higgins, Notes on Categories and Groupoids, Van Nostrand, 1971.
  • [6] O. Mucuk, T. Sahan, N. Alemdar, Normality and Quotients in Crossed Modules and Group-groupoids, Appl. Categ. Struct. 23, 415–428, 2015.
  • [7] K. MacKenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series 124, 1987.
  • [8] H. Fischer, D. Repovš, Ž. Virk, A. Zastrow, On semilocally simply connected spaces, Topol. Appl. 158, 397–408, 2011.
  • [9] Z. Virk and A. Zastrow,A new topology on the universal path space, Topol. Appl. 231, 186–196, 2017.
  • [10] H. Spanier, Algebraic Topology, McGraw-Hill Book Co, New York-Toronto, Ont.- London, 1966.
  • [11] A. Pakdaman, F. Shahini, The fundamental groupoid as a topological groupoid: Lasso topology, Topol. Appl. 302, 107837, 2021.

Topological fundamental groupoids: Brown's topology

Year 2023, Volume: 52 Issue: 4, 896 - 906, 15.08.2023
https://doi.org/10.15672/hujms.1205441

Abstract

In this paper, we generalize the Brown$^{^,}$s topology on the fundamental groupoids. For a locally path connected space $X$ and a totally disconnected normal subgroupoid $M$ of $\pi X$, we define a topology on the quotient groupoid $\dfrac{\pi X}{M}$ which is a generalization of what introduced by Brown for locally path connected and semilocally simply connected spaces. We prove that $\dfrac{\pi X}{M}$ equipped with this topology is a topological groupoid. Also, we will find a class of subgroupoids of topological groupoids whose their related quotient groupoids will be topological groupoids. By using this, we show that our topology on $\dfrac{\pi X}{M}$ is equivalent to the quotient of the Lasso topology on the topological fundamental groupoids, $\dfrac{\pi^L X}{M}$.

References

  • [1] R. Brown, Topology and Groupoids. Deganwy, United Kingdom: BookSurge LLC, 2006.
  • [2] R. Brown and G. Danesh-Naruie,Topological Fundamental Groupoid as Topological Groupoid, Proc. Edinburgh Math. Soc. 19, 237–244, 1975.
  • [3] R. Brown and J.P.L. Hardy,Topological groupoid: I. Universal constructions, Math. Nachr. 71 (1), 273–286, 1976.
  • [4] N. Brodskiy, J. Dydac, B. Labuz, A. Mitra, Covering maps for locally path-connected spaces, Fundam. Math. 218, 13–46, 2012.
  • [5] P. J. Higgins, Notes on Categories and Groupoids, Van Nostrand, 1971.
  • [6] O. Mucuk, T. Sahan, N. Alemdar, Normality and Quotients in Crossed Modules and Group-groupoids, Appl. Categ. Struct. 23, 415–428, 2015.
  • [7] K. MacKenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series 124, 1987.
  • [8] H. Fischer, D. Repovš, Ž. Virk, A. Zastrow, On semilocally simply connected spaces, Topol. Appl. 158, 397–408, 2011.
  • [9] Z. Virk and A. Zastrow,A new topology on the universal path space, Topol. Appl. 231, 186–196, 2017.
  • [10] H. Spanier, Algebraic Topology, McGraw-Hill Book Co, New York-Toronto, Ont.- London, 1966.
  • [11] A. Pakdaman, F. Shahini, The fundamental groupoid as a topological groupoid: Lasso topology, Topol. Appl. 302, 107837, 2021.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Pakdaman 0000-0002-6174-1043

Fereshteh Shahini 0000-0002-6174-1043

Publication Date August 15, 2023
Published in Issue Year 2023 Volume: 52 Issue: 4

Cite

APA Pakdaman, A., & Shahini, F. (2023). Topological fundamental groupoids: Brown’s topology. Hacettepe Journal of Mathematics and Statistics, 52(4), 896-906. https://doi.org/10.15672/hujms.1205441
AMA Pakdaman A, Shahini F. Topological fundamental groupoids: Brown’s topology. Hacettepe Journal of Mathematics and Statistics. August 2023;52(4):896-906. doi:10.15672/hujms.1205441
Chicago Pakdaman, Ali, and Fereshteh Shahini. “Topological Fundamental Groupoids: Brown’s Topology”. Hacettepe Journal of Mathematics and Statistics 52, no. 4 (August 2023): 896-906. https://doi.org/10.15672/hujms.1205441.
EndNote Pakdaman A, Shahini F (August 1, 2023) Topological fundamental groupoids: Brown’s topology. Hacettepe Journal of Mathematics and Statistics 52 4 896–906.
IEEE A. Pakdaman and F. Shahini, “Topological fundamental groupoids: Brown’s topology”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, pp. 896–906, 2023, doi: 10.15672/hujms.1205441.
ISNAD Pakdaman, Ali - Shahini, Fereshteh. “Topological Fundamental Groupoids: Brown’s Topology”. Hacettepe Journal of Mathematics and Statistics 52/4 (August 2023), 896-906. https://doi.org/10.15672/hujms.1205441.
JAMA Pakdaman A, Shahini F. Topological fundamental groupoids: Brown’s topology. Hacettepe Journal of Mathematics and Statistics. 2023;52:896–906.
MLA Pakdaman, Ali and Fereshteh Shahini. “Topological Fundamental Groupoids: Brown’s Topology”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, 2023, pp. 896-0, doi:10.15672/hujms.1205441.
Vancouver Pakdaman A, Shahini F. Topological fundamental groupoids: Brown’s topology. Hacettepe Journal of Mathematics and Statistics. 2023;52(4):896-90.