Research Article
BibTex RIS Cite

$A$-numerical radius : New inequalities and characterization of equalities

Year 2023, Volume: 52 Issue: 5, 1254 - 1262, 31.10.2023
https://doi.org/10.15672/hujms.1126384

Abstract

We develop new lower bounds for the $A$-numerical radius of semi-Hilbertian space operators, and applying these bounds we obtain upper bounds for the $A$-numerical radius of the commutators of operators. The bounds obtained here improve on the existing ones. Further, we provide characterizations for the equality of the existing $A$-numerical radius inequalities of semi-Hilbertian space operators.

Thanks

The first author would like to thank UGC, Govt. of India for the financial support in the form of senior research fellowship under the mentorship of Prof Kallol Paul

References

  • [1] M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428, 1460-1475, 2008.
  • [2] H. Baklouti, K. Feki and O.A.M. Sid Ahmed, Joint numerical ramges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555, 266-284, 2018.
  • [3] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, 2022.
  • [4] P. Bhunia, K. Feki and K. Paul, A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iran. Math. Soc. 47, 435-457, 2021.
  • [5] P. Bhunia, K. Feki and K. Paul, Generalized A-numerical radius of operators and related inequalities, Bull. Iran. Math. Soc. 48 (6), 3883-3907, 2022.
  • [6] P. Bhunia, R.K. Nayak and K. Paul, Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (4), 1498-1511, 2020.
  • [7] P. Bhunia, R.K. Nayak and K. Paul, Improvement of A-numerical radius inequalities of semi-Hilbertian space operators, Results Math. 76 (3), 2021.
  • [8] P. Bhunia, S. Jana and K. Paul, Refined inequalities for the numerical radius of Hilbert space operators, https://arxiv.org/abs/2106.13949, 2021.
  • [9] P. Bhunia and K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius, Linear Algebra Appl. 630, 306-315, 2021.
  • [10] P. Bhunia and K. Paul, Some improvement of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra, 70 (10), 1995-2013, 2022.
  • [11] P. Bhunia, K. Paul and R.K. Nayak, On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36, 143-157, 2020.
  • [12] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17, 413-416, 1966.
  • [13] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11, 929-946, 2020.
  • [14] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115 (5), 535-544, 2020.
  • [15] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math. Soc. 58 (6), 1385-1405, 2021.
  • [16] K. Feki, Improved inequalities related to the A-numerical radius for commutators of operators, Turkish J. Math. 46 (1), 311-322, 2022.
  • [17] M.S. Moslehian, Q. Xu and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591, 299-321, 2020.
  • [18] R.K. Nayak, P. Bhunia and K. Paul, Improvements of A-numerical radius bounds, Hokkaido Math. J. (2022), to appear.
  • [19] N.C. Rout, S. Sahoo and D. Mishra, On A-numerical radius inequalities for $ 2 \times 2 $ operator matrices, Linear Multilinear Algebra, 70 (14), 2672-2692, 2022.
  • [20] A. Saddi, A-normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (1), 12 pp. 2012.
  • [21] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578, 159-183, 2019.
Year 2023, Volume: 52 Issue: 5, 1254 - 1262, 31.10.2023
https://doi.org/10.15672/hujms.1126384

Abstract

References

  • [1] M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428, 1460-1475, 2008.
  • [2] H. Baklouti, K. Feki and O.A.M. Sid Ahmed, Joint numerical ramges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555, 266-284, 2018.
  • [3] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, 2022.
  • [4] P. Bhunia, K. Feki and K. Paul, A-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iran. Math. Soc. 47, 435-457, 2021.
  • [5] P. Bhunia, K. Feki and K. Paul, Generalized A-numerical radius of operators and related inequalities, Bull. Iran. Math. Soc. 48 (6), 3883-3907, 2022.
  • [6] P. Bhunia, R.K. Nayak and K. Paul, Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (4), 1498-1511, 2020.
  • [7] P. Bhunia, R.K. Nayak and K. Paul, Improvement of A-numerical radius inequalities of semi-Hilbertian space operators, Results Math. 76 (3), 2021.
  • [8] P. Bhunia, S. Jana and K. Paul, Refined inequalities for the numerical radius of Hilbert space operators, https://arxiv.org/abs/2106.13949, 2021.
  • [9] P. Bhunia and K. Paul, Development of inequalities and characterization of equality conditions for the numerical radius, Linear Algebra Appl. 630, 306-315, 2021.
  • [10] P. Bhunia and K. Paul, Some improvement of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra, 70 (10), 1995-2013, 2022.
  • [11] P. Bhunia, K. Paul and R.K. Nayak, On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36, 143-157, 2020.
  • [12] R.G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17, 413-416, 1966.
  • [13] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11, 929-946, 2020.
  • [14] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115 (5), 535-544, 2020.
  • [15] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math. Soc. 58 (6), 1385-1405, 2021.
  • [16] K. Feki, Improved inequalities related to the A-numerical radius for commutators of operators, Turkish J. Math. 46 (1), 311-322, 2022.
  • [17] M.S. Moslehian, Q. Xu and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591, 299-321, 2020.
  • [18] R.K. Nayak, P. Bhunia and K. Paul, Improvements of A-numerical radius bounds, Hokkaido Math. J. (2022), to appear.
  • [19] N.C. Rout, S. Sahoo and D. Mishra, On A-numerical radius inequalities for $ 2 \times 2 $ operator matrices, Linear Multilinear Algebra, 70 (14), 2672-2692, 2022.
  • [20] A. Saddi, A-normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (1), 12 pp. 2012.
  • [21] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578, 159-183, 2019.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Pintu Bhunia This is me 0000-0002-2266-0769

Kallol Paul 0000-0002-7637-0812

Publication Date October 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 5

Cite

APA Bhunia, P., & Paul, K. (2023). $A$-numerical radius : New inequalities and characterization of equalities. Hacettepe Journal of Mathematics and Statistics, 52(5), 1254-1262. https://doi.org/10.15672/hujms.1126384
AMA Bhunia P, Paul K. $A$-numerical radius : New inequalities and characterization of equalities. Hacettepe Journal of Mathematics and Statistics. October 2023;52(5):1254-1262. doi:10.15672/hujms.1126384
Chicago Bhunia, Pintu, and Kallol Paul. “$A$-Numerical Radius : New Inequalities and Characterization of Equalities”. Hacettepe Journal of Mathematics and Statistics 52, no. 5 (October 2023): 1254-62. https://doi.org/10.15672/hujms.1126384.
EndNote Bhunia P, Paul K (October 1, 2023) $A$-numerical radius : New inequalities and characterization of equalities. Hacettepe Journal of Mathematics and Statistics 52 5 1254–1262.
IEEE P. Bhunia and K. Paul, “$A$-numerical radius : New inequalities and characterization of equalities”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, pp. 1254–1262, 2023, doi: 10.15672/hujms.1126384.
ISNAD Bhunia, Pintu - Paul, Kallol. “$A$-Numerical Radius : New Inequalities and Characterization of Equalities”. Hacettepe Journal of Mathematics and Statistics 52/5 (October 2023), 1254-1262. https://doi.org/10.15672/hujms.1126384.
JAMA Bhunia P, Paul K. $A$-numerical radius : New inequalities and characterization of equalities. Hacettepe Journal of Mathematics and Statistics. 2023;52:1254–1262.
MLA Bhunia, Pintu and Kallol Paul. “$A$-Numerical Radius : New Inequalities and Characterization of Equalities”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, 2023, pp. 1254-62, doi:10.15672/hujms.1126384.
Vancouver Bhunia P, Paul K. $A$-numerical radius : New inequalities and characterization of equalities. Hacettepe Journal of Mathematics and Statistics. 2023;52(5):1254-62.