$A$-numerical radius : New inequalities and characterization of equalities
Year 2023,
Volume: 52 Issue: 5, 1254 - 1262, 31.10.2023
Pintu Bhunia
Kallol Paul
Abstract
We develop new lower bounds for the $A$-numerical radius of semi-Hilbertian space operators, and applying these bounds we obtain upper bounds for the $A$-numerical radius of the commutators of operators. The bounds obtained here improve on the existing ones. Further, we provide characterizations for the equality of the existing $A$-numerical radius inequalities of semi-Hilbertian space operators.
Thanks
The first author would like to thank UGC, Govt. of India for the financial support in the form of senior research fellowship under the mentorship of Prof Kallol Paul
References
- [1] M.L. Arias, G. Corach and M.C. Gonzalez, Partial isometries in semi-Hilbertian
spaces, Linear Algebra Appl. 428, 1460-1475, 2008.
- [2] H. Baklouti, K. Feki and O.A.M. Sid Ahmed, Joint numerical ramges of operators in
semi-Hilbertian spaces, Linear Algebra Appl. 555, 266-284, 2018.
- [3] P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on Numerical Radius
Inequalities, Infosys Science Foundation Series, Infosys Science Foundation Series in
Mathematical Sciences, Springer Cham, 2022.
- [4] P. Bhunia, K. Feki and K. Paul, A-Numerical radius orthogonality and parallelism
of semi-Hilbertian space operators and their applications, Bull. Iran. Math. Soc. 47,
435-457, 2021.
- [5] P. Bhunia, K. Feki and K. Paul, Generalized A-numerical radius of operators and
related inequalities, Bull. Iran. Math. Soc. 48 (6), 3883-3907, 2022.
- [6] P. Bhunia, R.K. Nayak and K. Paul, Refinements of A-numerical radius inequalities
and their applications, Adv. Oper. Theory 5 (4), 1498-1511, 2020.
- [7] P. Bhunia, R.K. Nayak and K. Paul, Improvement of A-numerical radius inequalities
of semi-Hilbertian space operators, Results Math. 76 (3), 2021.
- [8] P. Bhunia, S. Jana and K. Paul, Refined inequalities for the numerical radius of Hilbert
space operators, https://arxiv.org/abs/2106.13949, 2021.
- [9] P. Bhunia and K. Paul, Development of inequalities and characterization of equality
conditions for the numerical radius, Linear Algebra Appl. 630, 306-315, 2021.
- [10] P. Bhunia and K. Paul, Some improvement of numerical radius inequalities of operators
and operator matrices, Linear Multilinear Algebra, 70 (10), 1995-2013, 2022.
- [11] P. Bhunia, K. Paul and R.K. Nayak, On inequalities for A-numerical radius of operators,
Electron. J. Linear Algebra 36, 143-157, 2020.
- [12] R.G. Douglas, On majorization, factorization and range inclusion of operators in
Hilbert space, Proc. Amer. Math. Soc. 17, 413-416, 1966.
- [13] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann.
Funct. Anal. 11, 929-946, 2020.
- [14] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch.
Math. 115 (5), 535-544, 2020.
- [15] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean
Math. Soc. 58 (6), 1385-1405, 2021.
- [16] K. Feki, Improved inequalities related to the A-numerical radius for commutators of
operators, Turkish J. Math. 46 (1), 311-322, 2022.
- [17] M.S. Moslehian, Q. Xu and A. Zamani, Seminorm and numerical radius inequalities
of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591, 299-321, 2020.
- [18] R.K. Nayak, P. Bhunia and K. Paul, Improvements of A-numerical radius bounds,
Hokkaido Math. J. (2022), to appear.
- [19] N.C. Rout, S. Sahoo and D. Mishra, On A-numerical radius inequalities for $ 2 \times 2 $
operator matrices, Linear Multilinear Algebra, 70 (14), 2672-2692, 2022.
- [20] A. Saddi, A-normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl.
9 (1), 12 pp. 2012.
- [21] A. Zamani, A-numerical radius inequalities for semi-Hilbertian space operators, Linear
Algebra Appl. 578, 159-183, 2019.