Research Article
BibTex RIS Cite

On the $n$th-Order subfractional Brownian motion

Year 2023, Volume: 52 Issue: 5, 1396 - 1407, 31.10.2023

Abstract

In the present work, we introduce the $n$th-Order subfractional Brownian motion $S_H^n = \lbrace S_H^n(t),~t\geq 0\rbrace$ with Hurst index $H\in (n-1,n)$ and order $n\geq 1$; then we examine some of its basic properties: self-similarity, long-range dependence, non Markovian nature and semimartingale property. A local law of iterated logarithm for $S_H^n$ is also established.

References

  • [1] M.A. Arcones, On the law of the iterated logarithm for Gaussian processes, J. Theoret. Probab. 8 (4), 877-903, 1995.
  • [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Statist. Probab. Lett. 69 (4), 405-419, 2004.
  • [3] T. Bojdecki, L. Gorostiza and A. Talarczyk, Limit theorems for occupation time fluctuations of branching systems i: long-range dependence, Stochastic Process. Appl. 116 (1), 1-18, 2006.
  • [4] T. Bojdecki, L. Gorostiza and A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Commun. Probab. 12, 161-172, 2007.
  • [5] J.J. Collins and C.J. De Luca, Upright, correlated random walks: A statisticalbiomechanics approach to the human postural control system, Chaos 5 (1), 57-63, 1995.
  • [6] R.M. Dudley, R. Norvaia and R. Norvaia, Concrete Functional Calculus, Springer, 2011.
  • [7] M. El Omari, Notes on spherical bifractional Brownian motion, Mod. Stoch. Theory Appl. 9 (3), 339-355, 2022.
  • [8] M. El Omari, An $\alpha$-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha\in\R_+$, Sankhya A 85 (1), 572-599, 2023.
  • [9] M. El Omari, Mixtures of higher-order fractional Brownian motions, Comm. Statist. Theory Methods 52 (12), 4200-4215, 2023.
  • [10] M. El Omari, Parameter estimation for nth-order mixed fractional Brownian motion with polynomial drift, J. Korean Stat. Soc. 52, 450-461, 2023.
  • [11] C.W.J. Granger, The typical spectral shape of an economic variable, Econometrica 34 (1), 150-161, 1966.
  • [12] D.P. Huy, A remark on non-Markov property of a fractional Brownian motion, Vietnam J. Math. 31 (3), 237-240, 2003.
  • [13] R. Jennane and R. Harba, Fractional Brownian motion: A model for image texture, EUSIPCO Signal Process. 3, 1389-1392, 1994.
  • [14] W.S. Kuklinski, K. Chandra, U.E. Ruttirmann and R.L. Webber, Application of fractal texture analysis to segmentation of dental radiographs, Proc. SPIE 1092, Medical Imaging III: Image Processing 1092, 111-117, 1989.
  • [15] C.M. Lee, Generalizations of l’Hôpitals rule, Proc. Amer. Math. Soc. 66 (2), 315-320, 1977.
  • [16] T. Lundahl, W.J. Ohley, S.M. Kay and R. Siffert, Fractional Brownian motion: A maximum likelihood estimator and its application to image texture, IEEE Trans. Med. Imag. 5 (3), 152-161, 1986.
  • [17] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4), 422-437, 1968.
  • [18] A.I. McLeod and K.W. Hipel, Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst phenomenon, Water Resour. Res. 14 (3), 491-508, 1978.
  • [19] A.P. Pentland, Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Intell. 6 (6), 661-674, 1984.
  • [20] E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren, and A. Bonami, nth-order fractional Brownian motion and fractional gaussian noises, IEEE Trans. Signal Process. 49 (5), 1049-1059, 2001.
  • [21] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Science & Business Media, 1999.
  • [22] G. Shen, C. Chen and L. Yan, Remarks on sub-fractional Bessel processes, Acta Math. Sci. Ser. 31 (5), 1860-1876, 2011.
  • [23] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5), 431-448, 2007.
  • [24] C. Tudor, On the Wiener integral with respect to a sub-fractional Brownian motion on an interval, J. Math. Anal. Appl. 351 (1), 456-468, 2009.
  • [25] W. Willinger, M.S. Taqqu, W.E. Leland and D.V. Wilson, Self-similarity in highspeed packet traffic: analysis and modeling of ethernet traffic measurements, Statist. Sci. 10 (1), 67-85, 1995.
  • [26] H. Qi and L. Yan, A law of iterated logarithm for the subfractional Brownian motion and an application, J. Inequal. Appl. 2018 (96), 1-18, 2018.
  • [27] W.H. Young, On indeterminate forms, Proc. Lond. Math. Soc. 2 (1), 40-76, 1910.
  • [28] M. Zabat, M. Vayer-Besançon, R. Harba, S. Bonnamy and H. Van Damme, Surface topography and mechanical properties of smectite films, Trends in Colloid and Interface Science XI, 96-102, Springer, Berlin, 1997.
Year 2023, Volume: 52 Issue: 5, 1396 - 1407, 31.10.2023

Abstract

References

  • [1] M.A. Arcones, On the law of the iterated logarithm for Gaussian processes, J. Theoret. Probab. 8 (4), 877-903, 1995.
  • [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Statist. Probab. Lett. 69 (4), 405-419, 2004.
  • [3] T. Bojdecki, L. Gorostiza and A. Talarczyk, Limit theorems for occupation time fluctuations of branching systems i: long-range dependence, Stochastic Process. Appl. 116 (1), 1-18, 2006.
  • [4] T. Bojdecki, L. Gorostiza and A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Commun. Probab. 12, 161-172, 2007.
  • [5] J.J. Collins and C.J. De Luca, Upright, correlated random walks: A statisticalbiomechanics approach to the human postural control system, Chaos 5 (1), 57-63, 1995.
  • [6] R.M. Dudley, R. Norvaia and R. Norvaia, Concrete Functional Calculus, Springer, 2011.
  • [7] M. El Omari, Notes on spherical bifractional Brownian motion, Mod. Stoch. Theory Appl. 9 (3), 339-355, 2022.
  • [8] M. El Omari, An $\alpha$-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha\in\R_+$, Sankhya A 85 (1), 572-599, 2023.
  • [9] M. El Omari, Mixtures of higher-order fractional Brownian motions, Comm. Statist. Theory Methods 52 (12), 4200-4215, 2023.
  • [10] M. El Omari, Parameter estimation for nth-order mixed fractional Brownian motion with polynomial drift, J. Korean Stat. Soc. 52, 450-461, 2023.
  • [11] C.W.J. Granger, The typical spectral shape of an economic variable, Econometrica 34 (1), 150-161, 1966.
  • [12] D.P. Huy, A remark on non-Markov property of a fractional Brownian motion, Vietnam J. Math. 31 (3), 237-240, 2003.
  • [13] R. Jennane and R. Harba, Fractional Brownian motion: A model for image texture, EUSIPCO Signal Process. 3, 1389-1392, 1994.
  • [14] W.S. Kuklinski, K. Chandra, U.E. Ruttirmann and R.L. Webber, Application of fractal texture analysis to segmentation of dental radiographs, Proc. SPIE 1092, Medical Imaging III: Image Processing 1092, 111-117, 1989.
  • [15] C.M. Lee, Generalizations of l’Hôpitals rule, Proc. Amer. Math. Soc. 66 (2), 315-320, 1977.
  • [16] T. Lundahl, W.J. Ohley, S.M. Kay and R. Siffert, Fractional Brownian motion: A maximum likelihood estimator and its application to image texture, IEEE Trans. Med. Imag. 5 (3), 152-161, 1986.
  • [17] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4), 422-437, 1968.
  • [18] A.I. McLeod and K.W. Hipel, Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst phenomenon, Water Resour. Res. 14 (3), 491-508, 1978.
  • [19] A.P. Pentland, Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Intell. 6 (6), 661-674, 1984.
  • [20] E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren, and A. Bonami, nth-order fractional Brownian motion and fractional gaussian noises, IEEE Trans. Signal Process. 49 (5), 1049-1059, 2001.
  • [21] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Science & Business Media, 1999.
  • [22] G. Shen, C. Chen and L. Yan, Remarks on sub-fractional Bessel processes, Acta Math. Sci. Ser. 31 (5), 1860-1876, 2011.
  • [23] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5), 431-448, 2007.
  • [24] C. Tudor, On the Wiener integral with respect to a sub-fractional Brownian motion on an interval, J. Math. Anal. Appl. 351 (1), 456-468, 2009.
  • [25] W. Willinger, M.S. Taqqu, W.E. Leland and D.V. Wilson, Self-similarity in highspeed packet traffic: analysis and modeling of ethernet traffic measurements, Statist. Sci. 10 (1), 67-85, 1995.
  • [26] H. Qi and L. Yan, A law of iterated logarithm for the subfractional Brownian motion and an application, J. Inequal. Appl. 2018 (96), 1-18, 2018.
  • [27] W.H. Young, On indeterminate forms, Proc. Lond. Math. Soc. 2 (1), 40-76, 1910.
  • [28] M. Zabat, M. Vayer-Besançon, R. Harba, S. Bonnamy and H. Van Damme, Surface topography and mechanical properties of smectite films, Trends in Colloid and Interface Science XI, 96-102, Springer, Berlin, 1997.
There are 28 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

El Omari Mohamed 0000-0003-0336-9092

Mabdaoui Mohamed 0000-0002-1811-5354

Early Pub Date June 22, 2023
Publication Date October 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 5

Cite

APA Mohamed, E. O., & Mohamed, M. (2023). On the $n$th-Order subfractional Brownian motion. Hacettepe Journal of Mathematics and Statistics, 52(5), 1396-1407.
AMA Mohamed EO, Mohamed M. On the $n$th-Order subfractional Brownian motion. Hacettepe Journal of Mathematics and Statistics. October 2023;52(5):1396-1407.
Chicago Mohamed, El Omari, and Mabdaoui Mohamed. “On the $n$th-Order Subfractional Brownian Motion”. Hacettepe Journal of Mathematics and Statistics 52, no. 5 (October 2023): 1396-1407.
EndNote Mohamed EO, Mohamed M (October 1, 2023) On the $n$th-Order subfractional Brownian motion. Hacettepe Journal of Mathematics and Statistics 52 5 1396–1407.
IEEE E. O. Mohamed and M. Mohamed, “On the $n$th-Order subfractional Brownian motion”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, pp. 1396–1407, 2023.
ISNAD Mohamed, El Omari - Mohamed, Mabdaoui. “On the $n$th-Order Subfractional Brownian Motion”. Hacettepe Journal of Mathematics and Statistics 52/5 (October 2023), 1396-1407.
JAMA Mohamed EO, Mohamed M. On the $n$th-Order subfractional Brownian motion. Hacettepe Journal of Mathematics and Statistics. 2023;52:1396–1407.
MLA Mohamed, El Omari and Mabdaoui Mohamed. “On the $n$th-Order Subfractional Brownian Motion”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, 2023, pp. 1396-07.
Vancouver Mohamed EO, Mohamed M. On the $n$th-Order subfractional Brownian motion. Hacettepe Journal of Mathematics and Statistics. 2023;52(5):1396-407.