Year 2023,
Volume: 52 Issue: 5, 1379 - 1395, 31.10.2023
Fatma Çiftci
,
Buğra Saraçoğlu
,
Neriman Akdam
,
Yunus Akdoğan
References
-
[1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance
index for Kumaraswamy distribution under first-failure progressive censoring
scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
-
[1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance
index for Kumaraswamy distribution under first-failure progressive censoring
scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
-
[2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz
distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14
(11), 5239-5247, 2017.
-
[2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz
distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14
(11), 5239-5247, 2017.
-
[3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability
for the exponential power (EP) distribution based on progressive type-II censored
samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
-
[3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability
for the exponential power (EP) distribution based on progressive type-II censored
samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
-
[4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution
under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685-
1702, 2006.
-
[4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution
under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685-
1702, 2006.
-
[5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid
composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and
Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
-
[5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid
composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and
Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
-
[6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions),
Test 16 (2), 211-296, 2007.
-
[6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions),
Test 16 (2), 211-296, 2007.
-
[7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and
Applications, Springer Science & Business Media, 2000.
-
[7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and
Applications, Springer Science & Business Media, 2000.
-
[8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating
progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
-
[8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating
progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
-
[9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling
plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
-
[9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling
plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
-
[10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability
with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
-
[10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability
with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
-
[11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3),
327-339, 1963.
-
[11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3),
327-339, 1963.
-
[12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric
inference for the reliability of copula-based stress-strength models, Qual.
Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
-
[12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric
inference for the reliability of copula-based stress-strength models, Qual.
Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
-
[13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the
generalized Gompertz distribution under progressive type-II right censored samples,
Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
-
[13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the
generalized Gompertz distribution under progressive type-II right censored samples,
Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
-
[14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for
Industrial and Applied Mathematics, 1982.
-
[14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for
Industrial and Applied Mathematics, 1982.
-
[15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution,
Appl. Math. Model. 37 (1-2), 13-24, 2013.
-
[15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution,
Appl. Math. Model. 37 (1-2), 13-24, 2013.
-
[16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution
with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
-
[16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution
with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
-
[17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized
inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45
(2), 641-659, 2021.
-
[17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized
inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45
(2), 641-659, 2021.
-
[18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent
stress-strength model for unit Gompertz distribution under progressive
type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
-
[18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent
stress-strength model for unit Gompertz distribution under progressive
type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
-
[19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis
of mechanical components under multistage load based on strength degradation, Qual.
Reliab. Eng. Int. 37 (2), 567-582, 2021.
-
[19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis
of mechanical components under multistage load based on strength degradation, Qual.
Reliab. Eng. Int. 37 (2), 567-582, 2021.
-
[20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution,
Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
-
[20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution,
Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
-
[21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete
and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066,
2017.
-
[21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete
and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066,
2017.
-
[22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under
progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
-
[22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under
progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
-
[23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under
joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339-
352, 2013.
-
[23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under
joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339-
352, 2013.
-
[24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat.
Methodol. 20 (1), 102–107, 1958.
-
[24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat.
Methodol. 20 (1), 102–107, 1958.
-
[25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación
Operative 31, 223-245, 1980.
-
[25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación
Operative 31, 223-245, 1980.
-
[26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on
the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
-
[26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on
the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
-
[27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance
index with power Rayleigh distribution based on progressive first-failure–
censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
-
[27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance
index with power Rayleigh distribution based on progressive first-failure–
censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
-
[28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive
censoring, Technometrics 13 (3), 521-534, 1971.
-
[28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive
censoring, Technometrics 13 (3), 521-534, 1971.
-
[29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively
censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386,
2002.
-
[29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively
censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386,
2002.
-
[30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for
the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
-
[30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for
the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
-
[31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y)
for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
-
[31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y)
for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
-
[32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test
for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
-
[32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test
for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
-
[33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability
for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447-
1453, 2017.
-
[33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability
for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447-
1453, 2017.
-
[34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its
stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
-
[34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its
stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
-
[35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential
distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729-
744, 2012.
-
[35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential
distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729-
744, 2012.
-
[36] A.A. Soliman, Estimation of parameters of life from progressively censored data using
Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
-
[36] A.A. Soliman, Estimation of parameters of life from progressively censored data using
Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
-
[37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull
distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42
(24), 4476-4498, 2013.
-
[37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull
distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42
(24), 4476-4498, 2013.
-
[38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively
censored data, Technometrics 36 (1), 84-91, 1994.
-
[38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively
censored data, Technometrics 36 (1), 84-91, 1994.
-
[39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively
censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
-
[39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively
censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
-
[40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling,
Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
-
[40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling,
Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
-
[41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic
distribution under adaptive type II progressive censoring, Entropy 23 (12),
1558, 2021.
-
[41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic
distribution under adaptive type II progressive censoring, Entropy 23 (12),
1558, 2021.
-
[42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under
progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71,
1996.
-
[42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under
progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71,
1996.
Estimation of stress-strength reliability for generalized Gompertz distribution under progressive type-II censoring
Year 2023,
Volume: 52 Issue: 5, 1379 - 1395, 31.10.2023
Fatma Çiftci
,
Buğra Saraçoğlu
,
Neriman Akdam
,
Yunus Akdoğan
Abstract
In this study, the stress-strength reliability, $R=P(Y
References
-
[1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance
index for Kumaraswamy distribution under first-failure progressive censoring
scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
-
[1] M.M.E. Abd El-Monsef and W.A.A.E.L. Hassanein, Assessing the lifetime performance
index for Kumaraswamy distribution under first-failure progressive censoring
scheme for ball bearing revolutions, Qual. Reliab. Eng. Int. 36 (3), 1086-1097, 2020.
-
[2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz
distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14
(11), 5239-5247, 2017.
-
[2] H.H. Abu-Zinadah and R.A. Bakoban, Bayesian estimation of exponentiated Gompertz
distribution under progressive censoring type-II, J. Comput. Theor. Nanosci. 14
(11), 5239-5247, 2017.
-
[3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability
for the exponential power (EP) distribution based on progressive type-II censored
samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
-
[3] N. Akdam, İ. Kınacı and B. Saraçoğlu, Statistical inference of stress-strength reliability
for the exponential power (EP) distribution based on progressive type-II censored
samples, Hacet. J. Math. Stat. 46 (2), 239-253, 2017.
-
[4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution
under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685-
1702, 2006.
-
[4] A. Asgharzadeh, Point and interval estimation for a generalized logistic distribution
under progressive Type-II censoring, Comm. Statist. Theory Methods 35 (9), 1685-
1702, 2006.
-
[5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid
composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and
Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
-
[5] M.G. Bader and A.M. Priest, Statistical aspects of fiber and bundle strength in hybrid
composites, in: T. Hayashi, K. Kawata and S. Umekawa (ed.) Progress in Science and
Engineering Composites, Sci. Eng. Compos, (ICCM-IV) Tokyo, 1129–1136, 1982.
-
[6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions),
Test 16 (2), 211-296, 2007.
-
[6] N. Balakrishnan, Progressive censoring methodology: an appraisal, (with discussions),
Test 16 (2), 211-296, 2007.
-
[7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and
Applications, Springer Science & Business Media, 2000.
-
[7] N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and
Applications, Springer Science & Business Media, 2000.
-
[8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating
progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
-
[8] N. Balakrishnan and R.A. Sandhu, A simple simulation algorithm for generating
progressive type II censored sample, Amer. Statist. 49 (2), 229-230, 1994.
-
[9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling
plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
-
[9] U. Balasooriya, S.L. Saw and V. Gadag, Progressively censored reliability sampling
plans for the Weibull distribution, Technometrics 42 (2), 160-167, 2000.
-
[10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability
with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
-
[10] A. Biswas, S. Chakraborty and M. Mukherjee, On estimation of stress–strength reliability
with log-Lindley distribution, J. Stat. Comput. Simul. 91 (1), 128-150, 2021.
-
[11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3),
327-339, 1963.
-
[11] A.C. Cohen, Progressively censored samples in the life testing, Technometrics 5 (3),
327-339, 1963.
-
[12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric
inference for the reliability of copula-based stress-strength models, Qual.
Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
-
[12] B.B. de Andrade, A.R. do Nascimento and P.N. Rathie PN, Parametric and nonparametric
inference for the reliability of copula-based stress-strength models, Qual.
Reliab. Eng. Int. 36 (7), 2249-2267, 2020.
-
[13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the
generalized Gompertz distribution under progressive type-II right censored samples,
Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
-
[13] E. Demir and B. Saraçoğlu, Maximum likelihood estimation for the parameters of the
generalized Gompertz distribution under progressive type-II right censored samples,
Journal of Selcuk University Natural and Applied Science 4 (1), 41-48, 2015.
-
[14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for
Industrial and Applied Mathematics, 1982.
-
[14] B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans, Society for
Industrial and Applied Mathematics, 1982.
-
[15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution,
Appl. Math. Model. 37 (1-2), 13-24, 2013.
-
[15] A. El-Gohary, A. Alshamrani and A.N. Al-Otaibi, The generalized Gompertz distribution,
Appl. Math. Model. 37 (1-2), 13-24, 2013.
-
[16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution
with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
-
[16] D.I. Gibbons and L.C. Vance, Estimators for the 2-parameter Weibull distribution
with progressively censored samples, IEEE Trans. Rel. 32 (1), 95-99, 1983.
-
[17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized
inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45
(2), 641-659, 2021.
-
[17] A.S. Hassan, A. Al-Omari and H.F. Nagy, Stress–strength reliability for the generalized
inverted exponential distribution using MRSS, Iran. J. Sci. Technol. Trans. A: Sci. 45
(2), 641-659, 2021.
-
[18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent
stress-strength model for unit Gompertz distribution under progressive
type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
-
[18] M.K. Jha, S. Dey, R.M. Alotaibi and Y.M. Tripathi, Reliability estimation of a multicomponent
stress-strength model for unit Gompertz distribution under progressive
type II censoring, Qual. Reliab. Eng. Int. 36 (3), 965-987, 2020.
-
[19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis
of mechanical components under multistage load based on strength degradation, Qual.
Reliab. Eng. Int. 37 (2), 567-582, 2021.
-
[19] C. Jiang, X. Liu, X. Wang, X. Wang and S. Su, Interval dynamic reliability analysis
of mechanical components under multistage load based on strength degradation, Qual.
Reliab. Eng. Int. 37 (2), 567-582, 2021.
-
[20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution,
Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
-
[20] J.K. Jose, Estimation of stress-strength reliability using discrete phase type distribution,
Comm. Statist. Theory Methods 51 (2), 368-386, 2022.
-
[21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete
and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066,
2017.
-
[21] M. Jovanović, Estimation of P(X<Y) for geometric-exponential model based on complete
and censored samples, Comm. Statist. Simulation Comput. 46 (4), 3050-3066,
2017.
-
[22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under
progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
-
[22] C. Kuş and M.F. Kaya, Estimation for the parameters of the Pareto distribution under
progressive censoring, Comm. Statist. Theory Methods 36 (7), 1359-1365, 2007.
-
[23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under
joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339-
352, 2013.
-
[23] C.T. Lin and S.J. Ke, Estimation of P(Y<X) for location-scale distributions under
joint progressively type-II right censoring, Qual. Technol. Quant. Manag. 10 (3), 339-
352, 2013.
-
[24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat.
Methodol. 20 (1), 102–107, 1958.
-
[24] D.V. Lindley, Fiducial distributions and Bayes theorem, J. R. Stat. Soc. Ser. B. Stat.
Methodol. 20 (1), 102–107, 1958.
-
[25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación
Operative 31, 223-245, 1980.
-
[25] D.V. Lindley, Approximate Bayesian methods, Trabajos de Estadística y de Investigación
Operative 31, 223-245, 1980.
-
[26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on
the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
-
[26] Y.L. Lio and T.R. Tsai, Estimation of P(X<Y) for Burr XII distribution based on
the progressively first failure-censored samples, J. Appl. Stat. 39 (2), 309-322, 2012.
-
[27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance
index with power Rayleigh distribution based on progressive first-failure–
censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
-
[27] M.A.W. Mahmoud, N.M. Kilany and L.H. El-Refai, Inference of the lifetime performance
index with power Rayleigh distribution based on progressive first-failure–
censored data, Qual. Reliab. Eng. Int. 36 (5), 1528-1536, 2020.
-
[28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive
censoring, Technometrics 13 (3), 521-534, 1971.
-
[28] N.R. Mann, Best linear invariant estimation for Weibull parameter under progressive
censoring, Technometrics 13 (3), 521-534, 1971.
-
[29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively
censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386,
2002.
-
[29] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Estimation of parameters from progressively
censored data using EM algorithm, Comput. Stat. Data Anal. 39 (4), 371-386,
2002.
-
[30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for
the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
-
[30] H.K.T. Ng, P.S. Chan and N. Balakrishnan, Optimal progressive censoring plans for
the Weibull distribution, Technometrics 46 (4), 470-481, 2004.
-
[31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y)
for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
-
[31] M. Obradović, M. Jovanović, B. Milosević and V. Jevremović, Estimation of P(X<Y)
for geometric-Poisson model, Hacet. J. Math. Stat. 44 (4), 949-964, 2015.
-
[32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test
for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
-
[32] R. Pakyari and N. Balakrishnan, A general purpose approximate goodness-of-fit test
for progressively type-II censored data, IEEE Trans. Rel. 61 (1), 238-244, 2012.
-
[33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability
for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447-
1453, 2017.
-
[33] K.P. Patil and H.V. Kulkarni, On the interval estimation of stress–strength reliability
for exponentiated scale family of distributions, Qual. Reliab. Eng. Int. 33 (7), 1447-
1453, 2017.
-
[34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its
stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
-
[34] M.R. Piña-Monarrez, Weibull stress distribution for static mechanical stress and its
stress/strength analysis, Qual. Reliab. Eng. Int. 34 (2), 229-244, 2018.
-
[35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential
distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729-
744, 2012.
-
[35] B. Saraçoğlu, İ. Kınacı and D. Kundu, On estimation of P(Y<X) for exponential
distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5), 729-
744, 2012.
-
[36] A.A. Soliman, Estimation of parameters of life from progressively censored data using
Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
-
[36] A.A. Soliman, Estimation of parameters of life from progressively censored data using
Burr-XII model, IEEE Trans. Rel. 54 (1), 34-42, 2005.
-
[37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull
distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42
(24), 4476-4498, 2013.
-
[37] R. Valiollahi, A. Asgharzadeh and M.Z. Raqab, Estimation of P(Y<X) for Weibull
distribution under progressive type-II censoring, Comm. Statist. Theory Methods 42
(24), 4476-4498, 2013.
-
[38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively
censored data, Technometrics 36 (1), 84-91, 1994.
-
[38] R. Viveros and N. Balakrishnan, Interval estimation of parameters of life from progressively
censored data, Technometrics 36 (1), 84-91, 1994.
-
[39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively
censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
-
[39] S.J. Wu, Estimations of the parameters of the Weibull distribution with progressively
censored data, J. Jpn. Stat. Soc. Jpn. Issue 32 (2), 155-163, 2002.
-
[40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling,
Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
-
[40] S.J. Wu and C. Kuş, On estimation based on progressive first-failure-censored sampling,
Comput. Stat. Data Anal. 53 (10), 3659-3670, 2009.
-
[41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic
distribution under adaptive type II progressive censoring, Entropy 23 (12),
1558, 2021.
-
[41] Z. Xiong and W. Gui, Classical and Bayesian inference of an exponentiated halflogistic
distribution under adaptive type II progressive censoring, Entropy 23 (12),
1558, 2021.
-
[42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under
progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71,
1996.
-
[42] H.K. Yuen, S.K. Tse, Parameters estimation for Weibull distributed lifetime under
progressive censoring with random removals, J. Stat. Comput. Simul. 55 (1-2), 57-71,
1996.