A parabolic-elliptic chemo-repulsion system in 2D domains with nonlinear production
Year 2023,
Volume: 52 Issue: 6 - Special Issue: Nonlinear Evolution Problems with Applications, 1600 - 1614, 03.11.2023
Alex Ancoma-huarachi
,
Exequiel Mallea-zepeda
Abstract
In this paper we analyze a parabolic-elliptic chemo-repulsion system with superlinear production term in two-dimensional domains. Under the injection extract chemical substance on a subdomain $\omega\subset\Omega\subset\mathbb{R}^2$, we prove the existence and uniqueness of global-in-time strong solutions at finite time.
Supporting Institution
FONDECYT de Iniciación, ANID-Chile
References
- [1] R. Adams, Sobolev spaces, Academic Press, New York, 1975.
- [2] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations,
Springer, New York, 2011.
- [3] T. Ciéslak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence
to steady states in a chemorepulsion system, Parabolic and Navier-Stokes Equations, Part 1, Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw, 105-117, 2008.
- [4] E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids. Ad- vances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.
- [5] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985.
- [6] F. Guillén-González, E. Mallea-Zepeda and M.A. Rodríguez-Bellido, Optimal bilinear control problem related to a chemo-repulsion system in 2D domains, ESAIM Control Optim. Calc. Var. Vol. 26, art. 29, 2020.
- [7] F. Guillén-González, E. Mallea-Zepeda and M.A. Rodríguez-Bellido, A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem, SIAM J Control Optim. 58 (3), 1457-1490, 2020.
- [8] F. Guillén-González, E. Mallea-Zepeda and E.J. Villamizar-Roa, On a bi-dimensional chemo-repulsion model with nonlinear production and a related optimal control problem, Acta Appl. Math. 170, 963-979, 2020.
- [9] F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Study of a chemo-repulsion model with quadratic production. Part I: analysis of the continuous problem and time-discrete numerical schemes, Comput. Math. Appl. 80 (50), 692-713, 2020.
- [10] F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Study of a chemo-repulsion model with quadratic production. Part II: analysis of an uncondi- tional energy-stable fully discrete scheme, Comput. Math. Appl. 80 (50), 636-652, 2020.
- [11] F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Analysis of a chemo-repulsion model with nonlinear production: the continuous problem and un- conditional energy stable fully discrete schemes, arXiv:1807.5078v2 [math.CT].
- [12] E. Keller and L. Segel, Initiation of smile mold aggregation viewed as an instability, J. Theor. Biol. 26, 399-415, 1970.
- [13] J.L. Lions, Quelques métodes de résolution des problèmes aux limites non linéares, Dunod, Paris, 1969.
- [14] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, 1968.
- [15] S. Lorca, E. Mallea-Zepeda and E.J. Villamizar-Roa, Stationary solutions to a chemo-repulsion system and a related optimal bilinear control problem, Submitted, 2022.
- [16] M.S. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal. 5, 597-612, 1974.
- [17] M.S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl. 49, 215-225, 1975.
- [18] C. Morales-Rodrigo, On some models describing cellular movement: the macroscopic scale, Bol. Soc. Esp. Mat. Apl. 48, 83-109, 2009.
- [19] L. Necas, Les méthodes directes en théorie des equations elliptiques, Editeurs Academia, Prague, 1976.
- [20] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, CI. Sci (3) 13, 115-162, 1959.
- [21] H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC’S of taxis in reinforced randoms walks, SIAM J. Appl. Math. 57, 1044-1081, 1997.
- [22] J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. Vol. 146, 65-96, 1987.
- [23] Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. B 18, 2705-2722, 2013.
Year 2023,
Volume: 52 Issue: 6 - Special Issue: Nonlinear Evolution Problems with Applications, 1600 - 1614, 03.11.2023
Alex Ancoma-huarachi
,
Exequiel Mallea-zepeda
References
- [1] R. Adams, Sobolev spaces, Academic Press, New York, 1975.
- [2] H. Brézis, Functional analysis, Sobolev spaces and partial differential equations,
Springer, New York, 2011.
- [3] T. Ciéslak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence
to steady states in a chemorepulsion system, Parabolic and Navier-Stokes Equations, Part 1, Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw, 105-117, 2008.
- [4] E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids. Ad- vances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.
- [5] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985.
- [6] F. Guillén-González, E. Mallea-Zepeda and M.A. Rodríguez-Bellido, Optimal bilinear control problem related to a chemo-repulsion system in 2D domains, ESAIM Control Optim. Calc. Var. Vol. 26, art. 29, 2020.
- [7] F. Guillén-González, E. Mallea-Zepeda and M.A. Rodríguez-Bellido, A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem, SIAM J Control Optim. 58 (3), 1457-1490, 2020.
- [8] F. Guillén-González, E. Mallea-Zepeda and E.J. Villamizar-Roa, On a bi-dimensional chemo-repulsion model with nonlinear production and a related optimal control problem, Acta Appl. Math. 170, 963-979, 2020.
- [9] F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Study of a chemo-repulsion model with quadratic production. Part I: analysis of the continuous problem and time-discrete numerical schemes, Comput. Math. Appl. 80 (50), 692-713, 2020.
- [10] F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Study of a chemo-repulsion model with quadratic production. Part II: analysis of an uncondi- tional energy-stable fully discrete scheme, Comput. Math. Appl. 80 (50), 636-652, 2020.
- [11] F. Guillén-González, M.A. Rodríguez-Bellido and D.A. Rueda-Gómez, Analysis of a chemo-repulsion model with nonlinear production: the continuous problem and un- conditional energy stable fully discrete schemes, arXiv:1807.5078v2 [math.CT].
- [12] E. Keller and L. Segel, Initiation of smile mold aggregation viewed as an instability, J. Theor. Biol. 26, 399-415, 1970.
- [13] J.L. Lions, Quelques métodes de résolution des problèmes aux limites non linéares, Dunod, Paris, 1969.
- [14] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, 1968.
- [15] S. Lorca, E. Mallea-Zepeda and E.J. Villamizar-Roa, Stationary solutions to a chemo-repulsion system and a related optimal bilinear control problem, Submitted, 2022.
- [16] M.S. Mock, An initial value problem from semiconductor device theory, SIAM J. Math. Anal. 5, 597-612, 1974.
- [17] M.S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl. 49, 215-225, 1975.
- [18] C. Morales-Rodrigo, On some models describing cellular movement: the macroscopic scale, Bol. Soc. Esp. Mat. Apl. 48, 83-109, 2009.
- [19] L. Necas, Les méthodes directes en théorie des equations elliptiques, Editeurs Academia, Prague, 1976.
- [20] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, CI. Sci (3) 13, 115-162, 1959.
- [21] H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC’S of taxis in reinforced randoms walks, SIAM J. Appl. Math. 57, 1044-1081, 1997.
- [22] J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. Vol. 146, 65-96, 1987.
- [23] Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. B 18, 2705-2722, 2013.