Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 6 - Special Issue: Nonlinear Evolution Problems with Applications, 1533 - 1549, 03.11.2023
https://doi.org/10.15672/hujms.1193699

Abstract

References

  • [1] M. A. Abbasi, D. O. Ezulike, H. Dehghanpour and R. V. Hawkes, A comparative study of flowback rate and pressure transient behavior in multifractured horizontal wells completed in tight gas and oil reservoirs, J. Nat. Gas Sci. Eng. 17, 82–93, 2014.
  • [2] M. Asadi, R. A. Woodroof and R.E. Himes, Comparative study of flowback analysis using polymer concentrations and fracturing-fluid tracer methods: a field study, SPE Prod. & Oper. 23 (2), 147–157, 2008.
  • [3] Y. R. Bai, N. S. Papageorgiou and S. D. Zeng, A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian, Math. Z. 300, 325–345, 2022.
  • [4] J. X. Cen, A. A. Khan, D. Motreanu and S. D. Zeng, Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems, Inverse Problems, 38, 065006, 28 pp, 2022.
  • [5] J. X. Cen, S. Migórski, C. Min and J. C. Yao, Hemivariational inequality for contaminant reaction-diffusion model of recovered fracturing fluid in the wellbore of shale gas reservoir, Commun. Nonlinear Sci. Numer. Simulat. 118, 107020, 2023.
  • [6] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205, 247–262, 1975.
  • [7] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, Interscience, New York, 1983.
  • [8] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [9] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [10] X. X. Dong, W. J. Li, Q. Liu and H. H. Wang, Research on convection-reaction- diffusion model of contaminants in fracturing flowback fluid in non-equidistant frac- tures with arbitrary inclination of shale gas development, J. Petrol. Sci. Eng. 208, 109479, 2022.
  • [11] C. J. Fang and W. M. Han, Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow, Discrete Contin. Dyn. Syst. 36 (10), 5369-5386, 2016.
  • [12] C. J. Fang and W. M. Han, Stability analysis and optimal control of a stationary Stokes hemivariational inequality, Evol. Equ. Control The. 9 (4), 995-1008, 2020.
  • [13] E. Ghanbari, M.A. Abbasi, H. Dehghanpour and D. Bearinger, Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production, Presented at the SPE Unconventional Resource Conference Canada, Calgary, Alberta, Canada, November, SPE-167165-MS, 2013.
  • [14] H. Lin, X. Zhou, Y. L. Chen, B. Yang, X. X. Song, X. Y. Sun and L. F. Dong, Investigation of the factors influencing the flowback ratio in shale gas reservoirs: a study based on experimental observations and numerical simulations, J. Energy Resour. Technol. 143 (11), 113201, 2021.
  • [15] Z. B. Liu, X. X. Dong, L. Chen, C. Min and X. C. Zheng, Numerical simulation of recovered water flow and contaminants diffusion in the wellbore of shale gas horizontal wells, Environ. Earth. Sci. 79, 128, 2020.
  • [16] Z. B. Liu, X. X. Dong and C. Min, Transient analysis of contaminant diffusion in the wellbore of shale gas horizontal wells, Water Air Soil Pullut. 229 (7), 1–15, 2018.
  • [17] Z. H. Liu, D. Motreanu and S. D. Zeng, Generalized penalty and regularization method for differential variational-hemivariational inequalities, SIAM J. Optim. 31 1158– 1183, 2021.
  • [18] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013.
  • [19] S. Migórski and S. D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim. 72, 761–779, 2018.
  • [20] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (4), 510–585, 1969.
  • [21] S. D. Zeng, Y. R. Bai, L. Gasiński and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. PDEs 59, 18 pages, 2020.
  • [22] B. Zeng, Z. H. Liu and S. Migórski, On convergence of solutions to variational- hemivariational inequalities, Z. Angew. Math. Phys. 69 (3), 1-20, 2018.
  • [23] S. D. Zeng, S. Migórski and Z. H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31, 2829–2862, 2021.
  • [24] S. D. Zeng, S. Migórski and Z. H. Liu, Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation (in Chinese), Sci. Sin. Math. 52, 331–354, 2022.
  • [25] S. D. Zeng, N. S. Papageorgiou and V. D. Rˇadulescu, Nonsmooth dynamical systems: From the existence of solutions to optimal and feedback control, Bull. Sci. Math. 176, 103131, 2022.
  • [26] S. D. Zeng, V. D. Rˇadulescu and P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54, 1898–1926, 2022.
  • [27] S. D. Zeng, E. Vilches, Well-posedness of history/state-dependent implicit sweeping processes, J. Optim. Theory Appl. 186, 960–984, 2020.
  • [28] A. Zolfaghari, H. Dehghanpour, E. Ghanbari and D. Bearinger, Fracture characterization using flowback salt-concentration transient, SPE J. 21 (1), 233–244, 2016.

Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir

Year 2023, Volume: 52 Issue: 6 - Special Issue: Nonlinear Evolution Problems with Applications, 1533 - 1549, 03.11.2023
https://doi.org/10.15672/hujms.1193699

Abstract

This paper is concerned with the study of stability analysis to a complicated recovered frac- turing fluid model (RFFM, for short), which consists of a stationary incompressible Stokes equation involving multivalued and nonmonotone boundary conditions, and a reaction- diffusion equation with Neumann boundary conditions. Firstly, we introduce a family of perturbated problems corresponding to (RFFM) and deliver the variational formulation of perturbated problem which is a hemivariational inequality coupled with a variational equation. Then, we prove that the existence of weak solutions to perturbated problems and the solution sequence to perturbated problems are uniformly bounded. Finally, via employing Mosco convergent approach and the theory of nonsmooth, a stability result to (RFFM) is established.

References

  • [1] M. A. Abbasi, D. O. Ezulike, H. Dehghanpour and R. V. Hawkes, A comparative study of flowback rate and pressure transient behavior in multifractured horizontal wells completed in tight gas and oil reservoirs, J. Nat. Gas Sci. Eng. 17, 82–93, 2014.
  • [2] M. Asadi, R. A. Woodroof and R.E. Himes, Comparative study of flowback analysis using polymer concentrations and fracturing-fluid tracer methods: a field study, SPE Prod. & Oper. 23 (2), 147–157, 2008.
  • [3] Y. R. Bai, N. S. Papageorgiou and S. D. Zeng, A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian, Math. Z. 300, 325–345, 2022.
  • [4] J. X. Cen, A. A. Khan, D. Motreanu and S. D. Zeng, Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems, Inverse Problems, 38, 065006, 28 pp, 2022.
  • [5] J. X. Cen, S. Migórski, C. Min and J. C. Yao, Hemivariational inequality for contaminant reaction-diffusion model of recovered fracturing fluid in the wellbore of shale gas reservoir, Commun. Nonlinear Sci. Numer. Simulat. 118, 107020, 2023.
  • [6] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205, 247–262, 1975.
  • [7] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, Interscience, New York, 1983.
  • [8] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [9] Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
  • [10] X. X. Dong, W. J. Li, Q. Liu and H. H. Wang, Research on convection-reaction- diffusion model of contaminants in fracturing flowback fluid in non-equidistant frac- tures with arbitrary inclination of shale gas development, J. Petrol. Sci. Eng. 208, 109479, 2022.
  • [11] C. J. Fang and W. M. Han, Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow, Discrete Contin. Dyn. Syst. 36 (10), 5369-5386, 2016.
  • [12] C. J. Fang and W. M. Han, Stability analysis and optimal control of a stationary Stokes hemivariational inequality, Evol. Equ. Control The. 9 (4), 995-1008, 2020.
  • [13] E. Ghanbari, M.A. Abbasi, H. Dehghanpour and D. Bearinger, Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production, Presented at the SPE Unconventional Resource Conference Canada, Calgary, Alberta, Canada, November, SPE-167165-MS, 2013.
  • [14] H. Lin, X. Zhou, Y. L. Chen, B. Yang, X. X. Song, X. Y. Sun and L. F. Dong, Investigation of the factors influencing the flowback ratio in shale gas reservoirs: a study based on experimental observations and numerical simulations, J. Energy Resour. Technol. 143 (11), 113201, 2021.
  • [15] Z. B. Liu, X. X. Dong, L. Chen, C. Min and X. C. Zheng, Numerical simulation of recovered water flow and contaminants diffusion in the wellbore of shale gas horizontal wells, Environ. Earth. Sci. 79, 128, 2020.
  • [16] Z. B. Liu, X. X. Dong and C. Min, Transient analysis of contaminant diffusion in the wellbore of shale gas horizontal wells, Water Air Soil Pullut. 229 (7), 1–15, 2018.
  • [17] Z. H. Liu, D. Motreanu and S. D. Zeng, Generalized penalty and regularization method for differential variational-hemivariational inequalities, SIAM J. Optim. 31 1158– 1183, 2021.
  • [18] S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013.
  • [19] S. Migórski and S. D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim. 72, 761–779, 2018.
  • [20] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math. 3 (4), 510–585, 1969.
  • [21] S. D. Zeng, Y. R. Bai, L. Gasiński and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. PDEs 59, 18 pages, 2020.
  • [22] B. Zeng, Z. H. Liu and S. Migórski, On convergence of solutions to variational- hemivariational inequalities, Z. Angew. Math. Phys. 69 (3), 1-20, 2018.
  • [23] S. D. Zeng, S. Migórski and Z. H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31, 2829–2862, 2021.
  • [24] S. D. Zeng, S. Migórski and Z. H. Liu, Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation (in Chinese), Sci. Sin. Math. 52, 331–354, 2022.
  • [25] S. D. Zeng, N. S. Papageorgiou and V. D. Rˇadulescu, Nonsmooth dynamical systems: From the existence of solutions to optimal and feedback control, Bull. Sci. Math. 176, 103131, 2022.
  • [26] S. D. Zeng, V. D. Rˇadulescu and P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54, 1898–1926, 2022.
  • [27] S. D. Zeng, E. Vilches, Well-posedness of history/state-dependent implicit sweeping processes, J. Optim. Theory Appl. 186, 960–984, 2020.
  • [28] A. Zolfaghari, H. Dehghanpour, E. Ghanbari and D. Bearinger, Fracture characterization using flowback salt-concentration transient, SPE J. 21 (1), 233–244, 2016.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Jinxia Cen 0000-0001-9360-8821

Nicuşor Costea 0000-0002-5017-9470

Chao Min 0000-0003-0782-6510

Jen-chih Yao 0000-0002-0855-4097

Publication Date November 3, 2023
Published in Issue Year 2023 Volume: 52 Issue: 6 - Special Issue: Nonlinear Evolution Problems with Applications

Cite

APA Cen, J., Costea, N., Min, C., Yao, J.-c. (2023). Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir. Hacettepe Journal of Mathematics and Statistics, 52(6), 1533-1549. https://doi.org/10.15672/hujms.1193699
AMA Cen J, Costea N, Min C, Yao Jc. Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir. Hacettepe Journal of Mathematics and Statistics. November 2023;52(6):1533-1549. doi:10.15672/hujms.1193699
Chicago Cen, Jinxia, Nicuşor Costea, Chao Min, and Jen-chih Yao. “Stability Analysis for a Recovered Fracturing Fluid Model in the Wellbore of Shale Gas Reservoir”. Hacettepe Journal of Mathematics and Statistics 52, no. 6 (November 2023): 1533-49. https://doi.org/10.15672/hujms.1193699.
EndNote Cen J, Costea N, Min C, Yao J-c (November 1, 2023) Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir. Hacettepe Journal of Mathematics and Statistics 52 6 1533–1549.
IEEE J. Cen, N. Costea, C. Min, and J.-c. Yao, “Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 6, pp. 1533–1549, 2023, doi: 10.15672/hujms.1193699.
ISNAD Cen, Jinxia et al. “Stability Analysis for a Recovered Fracturing Fluid Model in the Wellbore of Shale Gas Reservoir”. Hacettepe Journal of Mathematics and Statistics 52/6 (November 2023), 1533-1549. https://doi.org/10.15672/hujms.1193699.
JAMA Cen J, Costea N, Min C, Yao J-c. Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir. Hacettepe Journal of Mathematics and Statistics. 2023;52:1533–1549.
MLA Cen, Jinxia et al. “Stability Analysis for a Recovered Fracturing Fluid Model in the Wellbore of Shale Gas Reservoir”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 6, 2023, pp. 1533-49, doi:10.15672/hujms.1193699.
Vancouver Cen J, Costea N, Min C, Yao J-c. Stability analysis for a recovered fracturing fluid model in the wellbore of shale gas reservoir. Hacettepe Journal of Mathematics and Statistics. 2023;52(6):1533-49.