Research Article
BibTex RIS Cite

On classification of $7$-dimensional odd-nilpotent Leibniz algebras

Year 2024, Volume: 53 Issue: 1, 121 - 129, 29.02.2024
https://doi.org/10.15672/hujms.1185538

Abstract

In this paper we extend the method of canonical form for congruence of bilinear forms to give the classification of some subclasses of $7-$dimensional nilpotent Leibniz algebras. Odd-nilpotent Leibniz algebras are defined as that its even dimensional ideals in lower central series are all zero and the classification of $7-$dimensional complex odd-nilpotent Leibniz algebras with one dimensional Leib ideal is obtained by applying the aforementioned method.

References

  • [1] S. Albeverio, B. A. Omirov and I. S. Rakhimov, Classification of 4-dimensional nilpotent complex Leibniz algebras, Extracta Mathematicae 21(3), 197-210, 2006.
  • [2] S. A. Ayupov and B. A. Omirov, On 3-dimensional Leibniz algebras, Uzbek. Math. Zh. 1, 9-14, 1999.
  • [3] A. Bloh, On a generalization of Lie algebra notion, Math. in USSR Doklady 165(3), 471-473, 1965.
  • [4] J.M. Casas, M.A. Insua, M. Ladra and S. Ladra, An algorithm for the classification of 3-dimensional complex Leibniz algebras, Linear Algebra Appl. 9, 3747-3756, 2012. DOI: 10.1016/j.laa.2011.11.039
  • [5] I. Demir, K. C. Misra and E. Stitzinger, On classification of four-dimensional nilpotent Leibniz Algebras, Comm. Algebra 45(3), 1012-1018, 2017. DOI: 10.1080/00927872.2016.1172626.
  • [6] I. Demir, Classification of 5−dimensional complex nilpotent Leibniz algebras, in Representations of Lie Algebras, Quantum Groups and Related Topics, 95-120, Contemp. Math. 713, Amer. Math. Soc., Providence, RI, 2018.
  • [7] I. Demir, Classification of some subclasses of 6-dimensional nilpotent Leibniz algebras., Turk J. Math. 44, 1925-1940, 2020.
  • [8] J. L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Enseign. Math. (2) 39(3-4), 269-293, 1993.
  • [9] I. M. Rikhsiboev and I. S. Rakhimov, Classification of three dimensional complex Leibniz algebras, AIP Conference Proc. 1450, 358-362, 2012. DOI: 10.1063/1.4724168.
  • [10] F. D. Teran, Canonical forms for congruence of matrices: a tribute to H. W. Turnbull and A. C. Aitken, 2nd meeting on Linear Algebra, Matrix Analysis and Applications, (ALAMA 2010), Valencia(Spain), 2010.
Year 2024, Volume: 53 Issue: 1, 121 - 129, 29.02.2024
https://doi.org/10.15672/hujms.1185538

Abstract

References

  • [1] S. Albeverio, B. A. Omirov and I. S. Rakhimov, Classification of 4-dimensional nilpotent complex Leibniz algebras, Extracta Mathematicae 21(3), 197-210, 2006.
  • [2] S. A. Ayupov and B. A. Omirov, On 3-dimensional Leibniz algebras, Uzbek. Math. Zh. 1, 9-14, 1999.
  • [3] A. Bloh, On a generalization of Lie algebra notion, Math. in USSR Doklady 165(3), 471-473, 1965.
  • [4] J.M. Casas, M.A. Insua, M. Ladra and S. Ladra, An algorithm for the classification of 3-dimensional complex Leibniz algebras, Linear Algebra Appl. 9, 3747-3756, 2012. DOI: 10.1016/j.laa.2011.11.039
  • [5] I. Demir, K. C. Misra and E. Stitzinger, On classification of four-dimensional nilpotent Leibniz Algebras, Comm. Algebra 45(3), 1012-1018, 2017. DOI: 10.1080/00927872.2016.1172626.
  • [6] I. Demir, Classification of 5−dimensional complex nilpotent Leibniz algebras, in Representations of Lie Algebras, Quantum Groups and Related Topics, 95-120, Contemp. Math. 713, Amer. Math. Soc., Providence, RI, 2018.
  • [7] I. Demir, Classification of some subclasses of 6-dimensional nilpotent Leibniz algebras., Turk J. Math. 44, 1925-1940, 2020.
  • [8] J. L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Enseign. Math. (2) 39(3-4), 269-293, 1993.
  • [9] I. M. Rikhsiboev and I. S. Rakhimov, Classification of three dimensional complex Leibniz algebras, AIP Conference Proc. 1450, 358-362, 2012. DOI: 10.1063/1.4724168.
  • [10] F. D. Teran, Canonical forms for congruence of matrices: a tribute to H. W. Turnbull and A. C. Aitken, 2nd meeting on Linear Algebra, Matrix Analysis and Applications, (ALAMA 2010), Valencia(Spain), 2010.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

İsmail Demir 0000-0002-8070-6489

Early Pub Date August 15, 2023
Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 53 Issue: 1

Cite

APA Demir, İ. (2024). On classification of $7$-dimensional odd-nilpotent Leibniz algebras. Hacettepe Journal of Mathematics and Statistics, 53(1), 121-129. https://doi.org/10.15672/hujms.1185538
AMA Demir İ. On classification of $7$-dimensional odd-nilpotent Leibniz algebras. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):121-129. doi:10.15672/hujms.1185538
Chicago Demir, İsmail. “On Classification of $7$-Dimensional Odd-Nilpotent Leibniz Algebras”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 121-29. https://doi.org/10.15672/hujms.1185538.
EndNote Demir İ (February 1, 2024) On classification of $7$-dimensional odd-nilpotent Leibniz algebras. Hacettepe Journal of Mathematics and Statistics 53 1 121–129.
IEEE İ. Demir, “On classification of $7$-dimensional odd-nilpotent Leibniz algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 121–129, 2024, doi: 10.15672/hujms.1185538.
ISNAD Demir, İsmail. “On Classification of $7$-Dimensional Odd-Nilpotent Leibniz Algebras”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 121-129. https://doi.org/10.15672/hujms.1185538.
JAMA Demir İ. On classification of $7$-dimensional odd-nilpotent Leibniz algebras. Hacettepe Journal of Mathematics and Statistics. 2024;53:121–129.
MLA Demir, İsmail. “On Classification of $7$-Dimensional Odd-Nilpotent Leibniz Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 121-9, doi:10.15672/hujms.1185538.
Vancouver Demir İ. On classification of $7$-dimensional odd-nilpotent Leibniz algebras. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):121-9.