Research Article
BibTex RIS Cite
Year 2024, Volume: 53 Issue: 1, 88 - 106, 29.02.2024
https://doi.org/10.15672/hujms.1205089

Abstract

References

  • [1] R. Bělohlávek, Fuzzy Relation Systems, Foundation and Principles, Kluwer Academic, Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
  • [2] F. Borceux, Handbook of Categorical Algebra, Vol.2, Cambridge University Press. 1994.
  • [3] J.M. Fang, Stratified $L$-ordered convergence structures, Fuzzy Sets Syst. 161, 2130– 2149, 2010.
  • [4] J.M. Fang, Relationships between $L$-ordered convergence structures and strong $L$-topologies, Fuzzy Sets Syst. 161, 2923–2944, 2010.
  • [5] J.M. Fang and Y. Yue, $\top$-diagonal conditions and continuous extension theorem, Fuzzy Sets Syst. 321, 73–89, 2017.
  • [6] G.S.H. Cruttwell, Normed spaces and the change of base for enriched categories, Ph.D. thesis, Dalhousie University, 2008.
  • [7] U. Höhle, Many Valued Topology and its Applications, Kluwer Academic Publishers, Boston, 2001.
  • [8] U. Höhle, MV-algebra valued filter theory, Quaest. Math. 19, 23–46, 1996.
  • [9] U. Höhle and A.P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Handbook Series, vol.3, Kluwer Academic Publishers, Dordrecht, Boston, London, 123–173, 1999.
  • [10] G. Jäger, A category of $L$-fuzzy convergence spaces, Quaest. Math. 24, 501–517, 2001.
  • [11] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets Syst. 156, 1–24, 2005.
  • [12] G. Jäger, Compactification of lattice-valued convergence spaces, Fuzzy Sets Syst. 161, 10021010, 2010.
  • [13] G. Jäger, Largest and smallest T$_2$-compactifications of lattice-valued convergence spaces, Fuzzy Sets Syst. 190, 32–46, 2012.
  • [14] G. Jäger, Stratified $LMN$-convergence tower spaces, Fuzzy Sets Syst. 282, 62–73, 2016.
  • [15] G. Jäger, Connectedness and local connectedness for lattice-valued convergence spaces, Fuzzy Sets Syst. 300, 134–146, 2016.
  • [16] T. Leinster, Basic Category Theory, Cambridge University Press, 2014.
  • [17] L. Li and Q. Jin, On stratified $L$-convergence spaces: pretopological axioms and diagonal axioms, Fuzzy Sets Syst. 204, 40–52, 2012.
  • [18] L. Li and Q. Jin, $p$-Topologicalness and $p$-regularity for lattice-valued convergence spaces, Fuzzy Sets Syst. 238, 26–45, 2014.
  • [19] L. Li, Q. Jin and K. Hu, On stratified $L$-convergence spaces: Fischer’s diagonal axiom, Fuzzy Sets Syst. 267, 31–40, 2015.
  • [20] B. Pang, On $(L,M)$-fuzzy convergence spaces, Fuzzy Sets Syst. 238, 46–70, 2014.
  • [21] B. Pang, Stratified $L$-ordered filter spaces, Quaest. Math. 40 (5), 661–678, 2017.
  • [22] B. Pang, Categorical properties of $L$-fuzzifying convergence spaces, Filomat, 32 (11), 4021–4036, 2018.
  • [23] B. Pang, Convenient properties of stratified $L$-convergence tower spaces, Filomat, 33 (15), 4811–4825, 2019.
  • [24] B. Pang and Y. Zhao, Several types of enriched $(L,M)$-fuzzy convergence spaces, Fuzzy Sets Syst. 321, 55–72, 2017.
  • [25] G. Preuss, Foundations of Topology, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  • [26] G. Preuss, Semiuniform convergence spaces, Math. Japon, 41, 465-491, 1995.
  • [27] G. Preuss, The Theory of Topological Structures, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1998.
  • [28] D. Verity, Enriched categories, internal categories and change of base, Repr. Theory Appl. Categ. 20, 1266, 2011.
  • [29] W. Yao, On $L$-fuzzifying convergence spaces, Iran. J. Fuzzy Syst. 6 (1), 63–80, 2009.
  • [30] Q. Yu and J.M. Fang, The category of $\top$-convergence spaces and its Cartesian closedness, Iran. J. Fuzzy Syst. 14, 121–138, 2017.
  • [31] Y.L. Yue and J.M. Fang, The $\top$-filter monad and its applications, Fuzzy Sets Syst. 382, 79–97, 2020.
  • [32] L. Zhang and B. Pang, Monoidal closedness of the category of $\top$-semiuniform convergence spaces, Hacet. J. Math. Stat. 51 (5), 1348–1370, 2022.
  • [33] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$- filters, Fuzzy Sets Syst. 455, 198–221, 2023.
  • [34] L. Zhang and B. Pang, Convergence structures in $(L,M)$-fuzzy convex spaces, Filomat, 37 (9), 2859–2877, 2023.

Subcategories of the category of $\top$-convergence spaces

Year 2024, Volume: 53 Issue: 1, 88 - 106, 29.02.2024
https://doi.org/10.15672/hujms.1205089

Abstract

$\top$-convergence structures serve as an important tool to describe fuzzy topology. This paper aims to give further investigations on $\top$-convergence structures. Firstly, several types of $\top$-convergence structures are introduced, including Kent $\top$-convergence structures, $\top$-limit structures and principal $\top$-convergence structures, and their mutual categorical relationships as well as their own categorical properties are studied. Secondly, by changing of the underlying lattice, the ``change of base" approach is applied to $\top$-convergence structures and the relationships between $\top$-convergence structures with respect to different underlying lattices are demonstrated.

References

  • [1] R. Bělohlávek, Fuzzy Relation Systems, Foundation and Principles, Kluwer Academic, Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 2002.
  • [2] F. Borceux, Handbook of Categorical Algebra, Vol.2, Cambridge University Press. 1994.
  • [3] J.M. Fang, Stratified $L$-ordered convergence structures, Fuzzy Sets Syst. 161, 2130– 2149, 2010.
  • [4] J.M. Fang, Relationships between $L$-ordered convergence structures and strong $L$-topologies, Fuzzy Sets Syst. 161, 2923–2944, 2010.
  • [5] J.M. Fang and Y. Yue, $\top$-diagonal conditions and continuous extension theorem, Fuzzy Sets Syst. 321, 73–89, 2017.
  • [6] G.S.H. Cruttwell, Normed spaces and the change of base for enriched categories, Ph.D. thesis, Dalhousie University, 2008.
  • [7] U. Höhle, Many Valued Topology and its Applications, Kluwer Academic Publishers, Boston, 2001.
  • [8] U. Höhle, MV-algebra valued filter theory, Quaest. Math. 19, 23–46, 1996.
  • [9] U. Höhle and A.P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Handbook Series, vol.3, Kluwer Academic Publishers, Dordrecht, Boston, London, 123–173, 1999.
  • [10] G. Jäger, A category of $L$-fuzzy convergence spaces, Quaest. Math. 24, 501–517, 2001.
  • [11] G. Jäger, Subcategories of lattice-valued convergence spaces, Fuzzy Sets Syst. 156, 1–24, 2005.
  • [12] G. Jäger, Compactification of lattice-valued convergence spaces, Fuzzy Sets Syst. 161, 10021010, 2010.
  • [13] G. Jäger, Largest and smallest T$_2$-compactifications of lattice-valued convergence spaces, Fuzzy Sets Syst. 190, 32–46, 2012.
  • [14] G. Jäger, Stratified $LMN$-convergence tower spaces, Fuzzy Sets Syst. 282, 62–73, 2016.
  • [15] G. Jäger, Connectedness and local connectedness for lattice-valued convergence spaces, Fuzzy Sets Syst. 300, 134–146, 2016.
  • [16] T. Leinster, Basic Category Theory, Cambridge University Press, 2014.
  • [17] L. Li and Q. Jin, On stratified $L$-convergence spaces: pretopological axioms and diagonal axioms, Fuzzy Sets Syst. 204, 40–52, 2012.
  • [18] L. Li and Q. Jin, $p$-Topologicalness and $p$-regularity for lattice-valued convergence spaces, Fuzzy Sets Syst. 238, 26–45, 2014.
  • [19] L. Li, Q. Jin and K. Hu, On stratified $L$-convergence spaces: Fischer’s diagonal axiom, Fuzzy Sets Syst. 267, 31–40, 2015.
  • [20] B. Pang, On $(L,M)$-fuzzy convergence spaces, Fuzzy Sets Syst. 238, 46–70, 2014.
  • [21] B. Pang, Stratified $L$-ordered filter spaces, Quaest. Math. 40 (5), 661–678, 2017.
  • [22] B. Pang, Categorical properties of $L$-fuzzifying convergence spaces, Filomat, 32 (11), 4021–4036, 2018.
  • [23] B. Pang, Convenient properties of stratified $L$-convergence tower spaces, Filomat, 33 (15), 4811–4825, 2019.
  • [24] B. Pang and Y. Zhao, Several types of enriched $(L,M)$-fuzzy convergence spaces, Fuzzy Sets Syst. 321, 55–72, 2017.
  • [25] G. Preuss, Foundations of Topology, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  • [26] G. Preuss, Semiuniform convergence spaces, Math. Japon, 41, 465-491, 1995.
  • [27] G. Preuss, The Theory of Topological Structures, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1998.
  • [28] D. Verity, Enriched categories, internal categories and change of base, Repr. Theory Appl. Categ. 20, 1266, 2011.
  • [29] W. Yao, On $L$-fuzzifying convergence spaces, Iran. J. Fuzzy Syst. 6 (1), 63–80, 2009.
  • [30] Q. Yu and J.M. Fang, The category of $\top$-convergence spaces and its Cartesian closedness, Iran. J. Fuzzy Syst. 14, 121–138, 2017.
  • [31] Y.L. Yue and J.M. Fang, The $\top$-filter monad and its applications, Fuzzy Sets Syst. 382, 79–97, 2020.
  • [32] L. Zhang and B. Pang, Monoidal closedness of the category of $\top$-semiuniform convergence spaces, Hacet. J. Math. Stat. 51 (5), 1348–1370, 2022.
  • [33] L. Zhang and B. Pang, A new approach to lattice-valued convergence groups via $\top$- filters, Fuzzy Sets Syst. 455, 198–221, 2023.
  • [34] L. Zhang and B. Pang, Convergence structures in $(L,M)$-fuzzy convex spaces, Filomat, 37 (9), 2859–2877, 2023.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yuan Gao This is me 0000-0003-1083-0879

Bin Pang 0000-0001-5092-8278

Early Pub Date January 10, 2024
Publication Date February 29, 2024
Published in Issue Year 2024 Volume: 53 Issue: 1

Cite

APA Gao, Y., & Pang, B. (2024). Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics, 53(1), 88-106. https://doi.org/10.15672/hujms.1205089
AMA Gao Y, Pang B. Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics. February 2024;53(1):88-106. doi:10.15672/hujms.1205089
Chicago Gao, Yuan, and Bin Pang. “Subcategories of the Category of $\top$-Convergence Spaces”. Hacettepe Journal of Mathematics and Statistics 53, no. 1 (February 2024): 88-106. https://doi.org/10.15672/hujms.1205089.
EndNote Gao Y, Pang B (February 1, 2024) Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics 53 1 88–106.
IEEE Y. Gao and B. Pang, “Subcategories of the category of $\top$-convergence spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, pp. 88–106, 2024, doi: 10.15672/hujms.1205089.
ISNAD Gao, Yuan - Pang, Bin. “Subcategories of the Category of $\top$-Convergence Spaces”. Hacettepe Journal of Mathematics and Statistics 53/1 (February 2024), 88-106. https://doi.org/10.15672/hujms.1205089.
JAMA Gao Y, Pang B. Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53:88–106.
MLA Gao, Yuan and Bin Pang. “Subcategories of the Category of $\top$-Convergence Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 1, 2024, pp. 88-106, doi:10.15672/hujms.1205089.
Vancouver Gao Y, Pang B. Subcategories of the category of $\top$-convergence spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53(1):88-106.