Research Article
BibTex RIS Cite

Unit and idempotent additive maps over countable linear transformations

Year 2024, Volume: 53 Issue: 2, 305 - 313, 23.04.2024
https://doi.org/10.15672/hujms.1187608

Abstract

Let $V$ be a countably generated right vector space over a field $F$ and $\sigma\in End(V_F)$ be a shift operator. We show that there exist a unit $u$ and an idempotent $e$ in $End(V_F)$ such that $1-u,\sigma-u$ are units in $End(V_F)$ and $1-e,\sigma-e$ are idempotents in $End(V_F)$. We also obtain that if $D$ is a division ring $D\ncong \mathbb Z_2, \mathbb Z_3 $ and $V_D$ is a $D$-module, then for every $\alpha\in End(V_D)$ there exists a unit $u\in End(V_D)$ such that $1-u,\alpha-u$ are units in $End(V_D)$.

References

  • [1] V.P. Camillo and J. J. Simon, The Nicholson-Varadarajan Theorem on clean linear transformations, Glasg. Math. J. 44, 365369, 2002.
  • [2] H. Chen, Decompositions of countable linear transformations, Glasg. Math. J. 52 (3), 427433, 2010.
  • [3] H. Chen, Decompositions of linear Transformations over division rings, Algebra Colloq. 19 (3), 459-464, 2012.
  • [4] B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, Q. J. Math. 49 (3), 331-344, 1998.
  • [5] K.R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54, 261-287, 1998.
  • [6] M.T. Kosan, S. Sahinkaya and Y. Zhou, Additive maps on units of rings, Canad. Math. Bull. 61 (1), 130-141, 2018.
  • [7] M.T. Kosan and Y. Zhou, A class of rings with the 2-sum property, Appl. Algebra Engrg. Comm. Comput. 32 (3), 399-408, 2021.
  • [8] C. Li, L. Wang and Y. Zhou, On rings with the Goodearl-Menal condition, Comm. Algebra 40 (12), 4679-4692, 2012.
  • [9] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [10] W.K. Nicholson, K. Varadarajan, Countable linear transformations are clean, Proc. Amer. Math. Soc. 126 (1), 6164, 1998.
  • [11] L. Wang and Y. Zhou, Decomposing linear transformations, Bull. Aust. Math. Soc. 83, 256261, 2011.
  • [12] K.G. Wolfson, An ideal-theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75, 358-386, 1953.
  • [13] D. Zelinsky, Every linear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc. 5, 627-630, 1954.

Year 2024, Volume: 53 Issue: 2, 305 - 313, 23.04.2024
https://doi.org/10.15672/hujms.1187608

Abstract

References

  • [1] V.P. Camillo and J. J. Simon, The Nicholson-Varadarajan Theorem on clean linear transformations, Glasg. Math. J. 44, 365369, 2002.
  • [2] H. Chen, Decompositions of countable linear transformations, Glasg. Math. J. 52 (3), 427433, 2010.
  • [3] H. Chen, Decompositions of linear Transformations over division rings, Algebra Colloq. 19 (3), 459-464, 2012.
  • [4] B. Goldsmith, S. Pabst and A. Scott, Unit sum numbers of rings and modules, Q. J. Math. 49 (3), 331-344, 1998.
  • [5] K.R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54, 261-287, 1998.
  • [6] M.T. Kosan, S. Sahinkaya and Y. Zhou, Additive maps on units of rings, Canad. Math. Bull. 61 (1), 130-141, 2018.
  • [7] M.T. Kosan and Y. Zhou, A class of rings with the 2-sum property, Appl. Algebra Engrg. Comm. Comput. 32 (3), 399-408, 2021.
  • [8] C. Li, L. Wang and Y. Zhou, On rings with the Goodearl-Menal condition, Comm. Algebra 40 (12), 4679-4692, 2012.
  • [9] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229, 269-278, 1977.
  • [10] W.K. Nicholson, K. Varadarajan, Countable linear transformations are clean, Proc. Amer. Math. Soc. 126 (1), 6164, 1998.
  • [11] L. Wang and Y. Zhou, Decomposing linear transformations, Bull. Aust. Math. Soc. 83, 256261, 2011.
  • [12] K.G. Wolfson, An ideal-theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75, 358-386, 1953.
  • [13] D. Zelinsky, Every linear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc. 5, 627-630, 1954.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Günseli Gümüşel 0000-0001-8068-4294

M. Tamer Koşan 0000-0003-1775-2957

Jan Zemlıcka 0000-0003-3319-5193

Early Pub Date January 10, 2024
Publication Date April 23, 2024
Published in Issue Year 2024 Volume: 53 Issue: 2

Cite

APA Gümüşel, G., Koşan, M. T., & Zemlıcka, J. (2024). Unit and idempotent additive maps over countable linear transformations. Hacettepe Journal of Mathematics and Statistics, 53(2), 305-313. https://doi.org/10.15672/hujms.1187608
AMA Gümüşel G, Koşan M T, Zemlıcka J. Unit and idempotent additive maps over countable linear transformations. Hacettepe Journal of Mathematics and Statistics. April 2024;53(2):305-313. doi:10.15672/hujms.1187608
Chicago Gümüşel, Günseli, M. Tamer Koşan, and Jan Zemlıcka. “Unit and Idempotent Additive Maps over Countable Linear Transformations”. Hacettepe Journal of Mathematics and Statistics 53, no. 2 (April 2024): 305-13. https://doi.org/10.15672/hujms.1187608.
EndNote Gümüşel G, Koşan M T, Zemlıcka J (April 1, 2024) Unit and idempotent additive maps over countable linear transformations. Hacettepe Journal of Mathematics and Statistics 53 2 305–313.
IEEE G. Gümüşel, M. T. Koşan, and J. Zemlıcka, “Unit and idempotent additive maps over countable linear transformations”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 2, pp. 305–313, 2024, doi: 10.15672/hujms.1187608.
ISNAD Gümüşel, Günseli et al. “Unit and Idempotent Additive Maps over Countable Linear Transformations”. Hacettepe Journal of Mathematics and Statistics 53/2 (April2024), 305-313. https://doi.org/10.15672/hujms.1187608.
JAMA Gümüşel G, Koşan M T, Zemlıcka J. Unit and idempotent additive maps over countable linear transformations. Hacettepe Journal of Mathematics and Statistics. 2024;53:305–313.
MLA Gümüşel, Günseli et al. “Unit and Idempotent Additive Maps over Countable Linear Transformations”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 2, 2024, pp. 305-13, doi:10.15672/hujms.1187608.
Vancouver Gümüşel G, Koşan M T, Zemlıcka J. Unit and idempotent additive maps over countable linear transformations. Hacettepe Journal of Mathematics and Statistics. 2024;53(2):305-13.