On the boundedness of $B$-Riesz potential and its commutators on generalized weighted $B$-Morrey spaces
Year 2024,
Volume: 53 Issue: 2, 321 - 332, 23.04.2024
İsmail Ekincioğlu
,
Javanshir J. Hasanov
,
Cansu Keskin
Abstract
In the present paper, we shall investigate a characterization for the boundedness of the $B$-Riesz potential and its commutators on the generalized weighted $B$-Morrey spaces. We also give a characterization for the generalized weighted $B$-Morrey spaces via the boundedness of the Riesz potential and its commutators generated by generalized translate operators associated with Laplace-Bessel differential operator.
Supporting Institution
TUBITAK
Thanks
The authors would like to express their gratitude to the referees for his/her very valuable comments and suggestions.
References
- [1] D.R. Adams, A note on Riesz potentials, Duke Math. J. 42, 765-778, 1975.
- [2] A. Akbulut, I. Ekincioglu, A. Serbetci and T. Tararykova, Boundedness of the
anisotropic fractional maximal operator in anisotropic local Morrey-type spaces,
Eurasian Math. J. 2 (2), 5-30, 2011.
- [3] R. Ayazoglu and J.J. Hasanov, On the boundedness of B-Riesz potential in the generalized
weighted B-Morrey spaces, Georgian Math. J. 23 (2), 143-155, 2016.
- [4] C. Aykol and J.J. Hasanov, On the boundedness of B-maximal commutators, commutators
of B-Riesz potentials and B-singular integral operators in modified B-Morrey
spaces, Acta Sci. Math. (Szeged) 86 (3-4), 521-547, 2020.
- [5] M. Bramanti and M.C. Cerutti, Commutators of singular integrals on homogeneous
spaces, oll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 4, 843-884, 1996.
- [6] V.I. Burenkov and H.V. Guliyev, Necessary and sufficient conditions for boundedness
of the maximal operator in the local Morrey-type spaces, Studia Math. 163 (2), 157-
176, 2004.
- [7] V.I. Burenkov and V.S. Guliyev, Necessary and sufficient conditions for boundedness
of the Riesz potential in the local Morrey-type spaces, Potential Anal. 31 (2), 1-39,
2009.
- [8] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function,
Rend. Sem. Mat. Univ. Padova 7, 273-279, 1987.
- [9] G. Di Fazio and M.A. Ragusa, Commutators and Morrey spaces, Boll. Unione Mat.
Ital. Sez. A Mat. Soc. Cult. 5 (3), 323-332, 1991.
- [10] A.D. Gadjiev and I.A. Aliev, On classes of operators of potential types, generated by
a generalized translate, Reports of enlarged Session of the Seminars of I.N.Vekua Inst.
of Applied Mathematics Tbilisi 3 (2), 21-24, 1988 (Russian).
- [11] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and
on domains in $\mathbb{R}^n$, PhD thesis, Mat. Inst. Steklov, 1994.
- [12] V.S. Guliyev, Sobolev theorems for the Riesz B-potentials, Dokl. Akad. Nauk 358 (4),
450-451, 1998. (Russian)
- [13] V.S. Guliyev, Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-
Bessel spaces, Dokl. Akad. Nauk Russia 367 (2), 155-156, 1999.
- [14] V.S. Guliyev, Generalized weighted Morrey spaces and higher order commutators of
sublinear operators, Eurasian Math. J. 3 (3), 3361, 2012.
- [15] V. Guliyev, I. Ekincioglu, E. Kaya and Z. Safarov, Characterizations for the fractional
maximal commutator operator in generalized Morrey spaces on Carnot group, Integral
Transforms Spec. Funct. 30 (6), 453-470, 2019.
- [16] V.S. Guliyev and J.J. Hasanov, Sobolev-Morrey type inequality for Riesz potentials,
associated with the Laplace-Bessel differential operator, Fract. Calc. Appl. Anal. 9
(1), 17-32, 2006.
- [17] V.S. Guliyev and J.J. Hasanov, Necessary and sufficient conditions for the boundedness
of Riesz potential associated with the Laplace-Bessel differential operator in
Morrey spaces, J. Math. Anal. Appl. 347, 113-122, 2008.
- [18] J.J. Hasanov, A note on anisotropic potentials, associated with the Laplace-Bessel
differential operator, Oper. Matrices 2 (4), 465-481, 2008.
- [19] J.J. Hasanov, R. Ayazoglu and S. Bayrakci, B-maximal commutators, commutators
of B-singular integral operators and B-Riesz potentials on B-Morrey spaces, Open
Mathematics, 18, 715-730, 2020.
- [20] J.J. Hasanov, I. Ekincioglu and C. Keskin, A characterization for B-singular integral
operator and its commutators on generalized weighted B-Morrey spaces, (accepted for
publication)
- [21] I.A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy
Math. Inst. Steklov 89, 130-213, 1967.
- [22] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator,
Math. Nachr. 282 (2), 219-231, 2009.
- [23] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi
Mat. Nauk. (Russian), 6 (2), 102-143, 1951.
- [24] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel transform, Proc. Steklov Inst.
Math. 214, 234-249, 1997.
- [25] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces
Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, 183-189, Springer-
Verlag, Tokyo 1991.
- [26] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43, 126-166, 1938.
- [27] B. Muckenhoupt and E.M. Stein, Classical expansions and their relation to conjugate
harmonic functions, Trans. Amer. Math. Soc. 118, 17-92 1965.
- [28] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and Riesz
potentials on generalized Morrey spaces , Math. Nachr. 166, 95-103, 1994.
- [29] E. Nakai, Generalized fractional integrals on generalized Morrey spaces , Math. Nachr.
287 (2-3), 339-351, 2014.
- [30] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivative.
Theory and Applications, Gordon and Breach Sci. Publishers, 1993.
- [31] Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA Nonlinear
Differential Equations Appl. 12 (4-5), 413-425, 2008.
- [32] Y. Sawano, S.Sugano and H. Tanaka, Generalized fractional integral operators and
fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math.
Soc. 363 (12), 6481-6503, 2011.
- [33] A. Serbetci and I. Ekincioglu, On Boundedness of Riesz potential generated by generalized
translate operator on Ba spaces, Czech. Math. J. 54 (3), 579-589, 2004.
- [34] E.L. Shishkina and S.M. Sitnik, Transmutations, Singular and Fractional Differential
Equations with Applications to Mathematical Physics. Elsevier, 2020.
- [35] E.M. Stein, Singular Integrals And Differentiability Properties of Functions, Princeton
New Jersey, Princeton Uni. Press, 1970.
- [36] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton, NJ, Princeton Univ. Press, 1971.
- [37] K. Stempak, Almost everywhere summability of Laguerre series, Studia Math. 100
(2), 129-147, 1991.
- [38] K. Trimeche, Inversion of the Lions transmutation operators using generalized
wavelets, Appl. Comput. Harmon. Anal. 4, 97-112, 1997.
Year 2024,
Volume: 53 Issue: 2, 321 - 332, 23.04.2024
İsmail Ekincioğlu
,
Javanshir J. Hasanov
,
Cansu Keskin
References
- [1] D.R. Adams, A note on Riesz potentials, Duke Math. J. 42, 765-778, 1975.
- [2] A. Akbulut, I. Ekincioglu, A. Serbetci and T. Tararykova, Boundedness of the
anisotropic fractional maximal operator in anisotropic local Morrey-type spaces,
Eurasian Math. J. 2 (2), 5-30, 2011.
- [3] R. Ayazoglu and J.J. Hasanov, On the boundedness of B-Riesz potential in the generalized
weighted B-Morrey spaces, Georgian Math. J. 23 (2), 143-155, 2016.
- [4] C. Aykol and J.J. Hasanov, On the boundedness of B-maximal commutators, commutators
of B-Riesz potentials and B-singular integral operators in modified B-Morrey
spaces, Acta Sci. Math. (Szeged) 86 (3-4), 521-547, 2020.
- [5] M. Bramanti and M.C. Cerutti, Commutators of singular integrals on homogeneous
spaces, oll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 4, 843-884, 1996.
- [6] V.I. Burenkov and H.V. Guliyev, Necessary and sufficient conditions for boundedness
of the maximal operator in the local Morrey-type spaces, Studia Math. 163 (2), 157-
176, 2004.
- [7] V.I. Burenkov and V.S. Guliyev, Necessary and sufficient conditions for boundedness
of the Riesz potential in the local Morrey-type spaces, Potential Anal. 31 (2), 1-39,
2009.
- [8] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function,
Rend. Sem. Mat. Univ. Padova 7, 273-279, 1987.
- [9] G. Di Fazio and M.A. Ragusa, Commutators and Morrey spaces, Boll. Unione Mat.
Ital. Sez. A Mat. Soc. Cult. 5 (3), 323-332, 1991.
- [10] A.D. Gadjiev and I.A. Aliev, On classes of operators of potential types, generated by
a generalized translate, Reports of enlarged Session of the Seminars of I.N.Vekua Inst.
of Applied Mathematics Tbilisi 3 (2), 21-24, 1988 (Russian).
- [11] V.S. Guliyev, Integral operators on function spaces on the homogeneous groups and
on domains in $\mathbb{R}^n$, PhD thesis, Mat. Inst. Steklov, 1994.
- [12] V.S. Guliyev, Sobolev theorems for the Riesz B-potentials, Dokl. Akad. Nauk 358 (4),
450-451, 1998. (Russian)
- [13] V.S. Guliyev, Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-
Bessel spaces, Dokl. Akad. Nauk Russia 367 (2), 155-156, 1999.
- [14] V.S. Guliyev, Generalized weighted Morrey spaces and higher order commutators of
sublinear operators, Eurasian Math. J. 3 (3), 3361, 2012.
- [15] V. Guliyev, I. Ekincioglu, E. Kaya and Z. Safarov, Characterizations for the fractional
maximal commutator operator in generalized Morrey spaces on Carnot group, Integral
Transforms Spec. Funct. 30 (6), 453-470, 2019.
- [16] V.S. Guliyev and J.J. Hasanov, Sobolev-Morrey type inequality for Riesz potentials,
associated with the Laplace-Bessel differential operator, Fract. Calc. Appl. Anal. 9
(1), 17-32, 2006.
- [17] V.S. Guliyev and J.J. Hasanov, Necessary and sufficient conditions for the boundedness
of Riesz potential associated with the Laplace-Bessel differential operator in
Morrey spaces, J. Math. Anal. Appl. 347, 113-122, 2008.
- [18] J.J. Hasanov, A note on anisotropic potentials, associated with the Laplace-Bessel
differential operator, Oper. Matrices 2 (4), 465-481, 2008.
- [19] J.J. Hasanov, R. Ayazoglu and S. Bayrakci, B-maximal commutators, commutators
of B-singular integral operators and B-Riesz potentials on B-Morrey spaces, Open
Mathematics, 18, 715-730, 2020.
- [20] J.J. Hasanov, I. Ekincioglu and C. Keskin, A characterization for B-singular integral
operator and its commutators on generalized weighted B-Morrey spaces, (accepted for
publication)
- [21] I.A. Kipriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy
Math. Inst. Steklov 89, 130-213, 1967.
- [22] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator,
Math. Nachr. 282 (2), 219-231, 2009.
- [23] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi
Mat. Nauk. (Russian), 6 (2), 102-143, 1951.
- [24] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel transform, Proc. Steklov Inst.
Math. 214, 234-249, 1997.
- [25] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces
Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, 183-189, Springer-
Verlag, Tokyo 1991.
- [26] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations,
Trans. Amer. Math. Soc. 43, 126-166, 1938.
- [27] B. Muckenhoupt and E.M. Stein, Classical expansions and their relation to conjugate
harmonic functions, Trans. Amer. Math. Soc. 118, 17-92 1965.
- [28] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and Riesz
potentials on generalized Morrey spaces , Math. Nachr. 166, 95-103, 1994.
- [29] E. Nakai, Generalized fractional integrals on generalized Morrey spaces , Math. Nachr.
287 (2-3), 339-351, 2014.
- [30] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivative.
Theory and Applications, Gordon and Breach Sci. Publishers, 1993.
- [31] Y. Sawano, Generalized Morrey spaces for non-doubling measures, NoDEA Nonlinear
Differential Equations Appl. 12 (4-5), 413-425, 2008.
- [32] Y. Sawano, S.Sugano and H. Tanaka, Generalized fractional integral operators and
fractional maximal operators in the framework of Morrey spaces, Trans. Amer. Math.
Soc. 363 (12), 6481-6503, 2011.
- [33] A. Serbetci and I. Ekincioglu, On Boundedness of Riesz potential generated by generalized
translate operator on Ba spaces, Czech. Math. J. 54 (3), 579-589, 2004.
- [34] E.L. Shishkina and S.M. Sitnik, Transmutations, Singular and Fractional Differential
Equations with Applications to Mathematical Physics. Elsevier, 2020.
- [35] E.M. Stein, Singular Integrals And Differentiability Properties of Functions, Princeton
New Jersey, Princeton Uni. Press, 1970.
- [36] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton, NJ, Princeton Univ. Press, 1971.
- [37] K. Stempak, Almost everywhere summability of Laguerre series, Studia Math. 100
(2), 129-147, 1991.
- [38] K. Trimeche, Inversion of the Lions transmutation operators using generalized
wavelets, Appl. Comput. Harmon. Anal. 4, 97-112, 1997.