Research Article
BibTex RIS Cite

Local linear-$k$NN smoothing for semi-functional partial linear regression

Year 2024, Volume: 53 Issue: 2, 537 - 555, 23.04.2024
https://doi.org/10.15672/hujms.1294382

Abstract

The aim of this paper is to study a semi-functional partial linear regression model. The estimators are constructed by $k$-nearest neighbors local linear method. Some asymptotic results are established for an i.i.d sample under certain conditions, including asymptotic normality of the parametric component and the almost certain convergence (with rate) of the non-parametric component. Lastly, using cross-validation, the performances of our estimation method are presented on simulated data and on real data by comparing them with other known approaches for semi-functional partial linear regression models.

Supporting Institution

ATRST,

Project Number

PRFU, C00L03UN220120220002

References

  • [1] I.M. Almanjahie, W. Mesfer, A. Laksaci and M. Rachdi, Computational aspects of the kNN local linear smoothing for some conditional models in high dimensional statistics, Comm. Statist. Simulation Comput. 52 (7), 2985-3005, 2023.
  • [2] I.M. Almanjahie, O. Fetitah, M.K. Attouch and T. Benchikh, Functional nonparametric predictions in food industry using near-infrared spectroscopy measurement, Comput. Mater. Contin. 74 (3), 6307-6319, 2023.
  • [3] G. Aneiros-Pérez, I. Horov´a, M. Hu˜skov´a and P. Vieu, Editorial for the special issue on functional data analysis and related fields, J. Multivariate Anal. 189, 2022.
  • [4] G. Aneiros-Pérez and P. Vieu, Automatic estimation procedure in partial linear model with functional data, Stat. Pap. 52 (4), 751-771, 2011.
  • [5] G. Aneiros Pérez, P. Ra˜na, P. Vieu and J. Vilar, Bootstrap in semi-functional partial linear regression under dependence, Test 27 (3), 659-679, 2018.
  • [6] G. Aneiros-Pérez and P. Vieu, Nonparametric time series prediction: A semifunctional partial linear modeling, J. Multivariate Anal. 99, 834-857, 2008.
  • [7] G. Aneiros-Pérez and P. Vieu, Semi-functional partial linear regression, Stat. Probab. Lett. 76 (11), 1102-1110, 2006.
  • [8] M.K Attouch and T. Benchikh, Asymptotic distribution of robust k-nearest neighbour estimator for functional nonparametric models, Mat. Vesnik 644, 275-285, 2012.
  • [9] M.K Attouch, A. Laksaci and F. Rafaa, On the local linear estimate for functional regression: uniform in bandwidth consistency, Comm. Statist. Theory Methods 48, 1836-1853, 2019.
  • [10] M.K. Attouch, A. Laksaci and F. Rafaa, Estimation locale linéaire de la régression non paramétrique fonctionnelle par la méthode des k plus proches voisins, Comptes Rendus. Mathématique 355 (7), 824-829, 2017.
  • [11] A. Baíllo and A. Grané, Local linear regression for functional predictor and scalar response, J. Multivariate Anal. 100 (1), 102-111, 2009.
  • [12] J. Barrientos-Marin, F. Ferraty and P. Vieu, Locally modelled regression and functional data, J Nonparametr Stat. 22 (5-6), 617-632, 2010.
  • [13] M. Benallou, M.K. Attouch, T. Benchikh and O. Fetitah, Asymptotic results of semi-functional partial linear regression estimate under functional spatial dependency, Comm. Statist. Theory Methods 51, 1-21, 2021.
  • [14] A. Berlinet, A. Elamine and A. Mas, Local linear regression for functional data, Ann. Inst. Statist. Math. 63 (5), 1047-1075, 2011.
  • [15] G. Boente and A. Vahnovan, Robust estimators in semi-functional partial linear regression models, J. Multivariate Anal. 154 (C), 59-84, 2017.
  • [16] D. Bosq and D. Blanke, Inference and Prediction in Large Dimension, Wiley Series in Probability and Statistics, Chichester, 2007.
  • [17] P. Brown, T. Fearn and M. Vannucci, Bayesian wavelet regression on curves with application to a spectroscopic calibration problem, J. Amer. Statist. Assoc. 96, 398- 408, 2001.
  • [18] F. Burba, F. Ferraty and P. Vieu, k-Nearest Neighbour method in functional nonparametric regression. J. Nonparametr. Stat. 21 (4), 453-469, 2009.
  • [19] A. Chouaf and A. Laksaci, On the functional local linear estimate for spatial regression, Stat. Risk Model 29, 189-214, 2013.
  • [20] J. Demongeot, A. Naceri, A. Laksaci and M. Rachdi, Local linear regression modelization when all variables are curves, Statist. Probab. Lett. 121, 37-44, 2017.
  • [21] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications, London: Chapman and Hall, 1996.
  • [22] S. Feng and L. Xue, Partially functional linear varying coefficient model, Statistics 50 (4), 717-732, 2016.
  • [23] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice, Springer Series in Statistics, New York, 2006.
  • [24] T. Hsing and R.L. Eubank, Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators, John Wiley and Sons, 2015.
  • [25] S. Greven and F. Scheipl, A general framework for functional regression modelling, Stat. Model. 17 (1-2), 1-35, 2017.
  • [26] L. Kara-Zaitri, A. Laksaci, M. Rachdi and P. Vieu, Uniform in bandwidth consistency for various kernel estimators involving functional data, J. Nonparametr. Stat. 29 (1), 85-107, 2017.
  • [27] N. Kudraszow and P. Vieu P, Uniform consistency of kNN regressors for functional variables, Statist. Probab. Lett. 83 (8), 1863-1870, 2013.
  • [28] H. Lian, Convergence of functional k-nearest neighbor regression estimate with functional responses, Electron. J. Stat. 5, 31-40, 2011.
  • [29] H. Lian, Functional partial linear model, J. Nonparametr. Stat. 23 (1), 115-128, 2011.
  • [30] N. Ling, G. Aneiros-Pérez and P. Vieu, knn estimation in functional partial linear modeling, Statist. Papers 61 (1), 423-444, 2020.
  • [31] N. Ling, R. Kan, P. Vieu and S. Meng, Semi-functional partially linear regression model with responses missing at random, Metrika 82 (1), 39-70, 2019.
  • [32] N. Ling, S. Meng and P. Vieu, Uniform consistency rate of kNN regression estimation for functional time series data, J. Nonparametr. Stat. 31 (2),451-468, 2019.
  • [33] N. Ling and P. Vieu, On semiparametric regression in functional data analysis, Wiley Interdiscip. Rev.: Comput. Stat. 12 (6), 20-30, 2020.
  • [34] N. Ling and P. Vieu, Nonparametric modelling for functional data: selected survey and tracks for future, Statistics 52 (4), 934-949, 2018.
  • [35] S. Novo, G. Aneiros and P. Vieu. A kNN procedure in semiparametric functional data analysis, Statist. Probab. Lett. 17, 2021.
  • [36] J. Ramsay and B. Silverman, Functional Data Analysis (Second Edition), Spinger- Verlag, New York, 2005.
  • [37] H. Shang, Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density, Comput. Stat. 29 (3-4), 829-848, 2014.
  • [38] J. Zhang, Analysis of Variance for Functional Data, Monographs on Statistics and Applied Probability, CRC Press, 127, 2014.
  • [39] F. Zhao and B. Zhang, Testing linearity in functional partially linear models, Acta Math. Appl. Sin., Doi: 10.1007/s10255-023-1040-0, 2022.
  • [40] Z. Zhou and Z. Lin, Asymptotic normality of locally modelled regression estimator for functional data, J. Nonparametr. Stat. 28 (1), 116-131, 2016.
Year 2024, Volume: 53 Issue: 2, 537 - 555, 23.04.2024
https://doi.org/10.15672/hujms.1294382

Abstract

Project Number

PRFU, C00L03UN220120220002

References

  • [1] I.M. Almanjahie, W. Mesfer, A. Laksaci and M. Rachdi, Computational aspects of the kNN local linear smoothing for some conditional models in high dimensional statistics, Comm. Statist. Simulation Comput. 52 (7), 2985-3005, 2023.
  • [2] I.M. Almanjahie, O. Fetitah, M.K. Attouch and T. Benchikh, Functional nonparametric predictions in food industry using near-infrared spectroscopy measurement, Comput. Mater. Contin. 74 (3), 6307-6319, 2023.
  • [3] G. Aneiros-Pérez, I. Horov´a, M. Hu˜skov´a and P. Vieu, Editorial for the special issue on functional data analysis and related fields, J. Multivariate Anal. 189, 2022.
  • [4] G. Aneiros-Pérez and P. Vieu, Automatic estimation procedure in partial linear model with functional data, Stat. Pap. 52 (4), 751-771, 2011.
  • [5] G. Aneiros Pérez, P. Ra˜na, P. Vieu and J. Vilar, Bootstrap in semi-functional partial linear regression under dependence, Test 27 (3), 659-679, 2018.
  • [6] G. Aneiros-Pérez and P. Vieu, Nonparametric time series prediction: A semifunctional partial linear modeling, J. Multivariate Anal. 99, 834-857, 2008.
  • [7] G. Aneiros-Pérez and P. Vieu, Semi-functional partial linear regression, Stat. Probab. Lett. 76 (11), 1102-1110, 2006.
  • [8] M.K Attouch and T. Benchikh, Asymptotic distribution of robust k-nearest neighbour estimator for functional nonparametric models, Mat. Vesnik 644, 275-285, 2012.
  • [9] M.K Attouch, A. Laksaci and F. Rafaa, On the local linear estimate for functional regression: uniform in bandwidth consistency, Comm. Statist. Theory Methods 48, 1836-1853, 2019.
  • [10] M.K. Attouch, A. Laksaci and F. Rafaa, Estimation locale linéaire de la régression non paramétrique fonctionnelle par la méthode des k plus proches voisins, Comptes Rendus. Mathématique 355 (7), 824-829, 2017.
  • [11] A. Baíllo and A. Grané, Local linear regression for functional predictor and scalar response, J. Multivariate Anal. 100 (1), 102-111, 2009.
  • [12] J. Barrientos-Marin, F. Ferraty and P. Vieu, Locally modelled regression and functional data, J Nonparametr Stat. 22 (5-6), 617-632, 2010.
  • [13] M. Benallou, M.K. Attouch, T. Benchikh and O. Fetitah, Asymptotic results of semi-functional partial linear regression estimate under functional spatial dependency, Comm. Statist. Theory Methods 51, 1-21, 2021.
  • [14] A. Berlinet, A. Elamine and A. Mas, Local linear regression for functional data, Ann. Inst. Statist. Math. 63 (5), 1047-1075, 2011.
  • [15] G. Boente and A. Vahnovan, Robust estimators in semi-functional partial linear regression models, J. Multivariate Anal. 154 (C), 59-84, 2017.
  • [16] D. Bosq and D. Blanke, Inference and Prediction in Large Dimension, Wiley Series in Probability and Statistics, Chichester, 2007.
  • [17] P. Brown, T. Fearn and M. Vannucci, Bayesian wavelet regression on curves with application to a spectroscopic calibration problem, J. Amer. Statist. Assoc. 96, 398- 408, 2001.
  • [18] F. Burba, F. Ferraty and P. Vieu, k-Nearest Neighbour method in functional nonparametric regression. J. Nonparametr. Stat. 21 (4), 453-469, 2009.
  • [19] A. Chouaf and A. Laksaci, On the functional local linear estimate for spatial regression, Stat. Risk Model 29, 189-214, 2013.
  • [20] J. Demongeot, A. Naceri, A. Laksaci and M. Rachdi, Local linear regression modelization when all variables are curves, Statist. Probab. Lett. 121, 37-44, 2017.
  • [21] J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications, London: Chapman and Hall, 1996.
  • [22] S. Feng and L. Xue, Partially functional linear varying coefficient model, Statistics 50 (4), 717-732, 2016.
  • [23] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis. Theory and Practice, Springer Series in Statistics, New York, 2006.
  • [24] T. Hsing and R.L. Eubank, Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators, John Wiley and Sons, 2015.
  • [25] S. Greven and F. Scheipl, A general framework for functional regression modelling, Stat. Model. 17 (1-2), 1-35, 2017.
  • [26] L. Kara-Zaitri, A. Laksaci, M. Rachdi and P. Vieu, Uniform in bandwidth consistency for various kernel estimators involving functional data, J. Nonparametr. Stat. 29 (1), 85-107, 2017.
  • [27] N. Kudraszow and P. Vieu P, Uniform consistency of kNN regressors for functional variables, Statist. Probab. Lett. 83 (8), 1863-1870, 2013.
  • [28] H. Lian, Convergence of functional k-nearest neighbor regression estimate with functional responses, Electron. J. Stat. 5, 31-40, 2011.
  • [29] H. Lian, Functional partial linear model, J. Nonparametr. Stat. 23 (1), 115-128, 2011.
  • [30] N. Ling, G. Aneiros-Pérez and P. Vieu, knn estimation in functional partial linear modeling, Statist. Papers 61 (1), 423-444, 2020.
  • [31] N. Ling, R. Kan, P. Vieu and S. Meng, Semi-functional partially linear regression model with responses missing at random, Metrika 82 (1), 39-70, 2019.
  • [32] N. Ling, S. Meng and P. Vieu, Uniform consistency rate of kNN regression estimation for functional time series data, J. Nonparametr. Stat. 31 (2),451-468, 2019.
  • [33] N. Ling and P. Vieu, On semiparametric regression in functional data analysis, Wiley Interdiscip. Rev.: Comput. Stat. 12 (6), 20-30, 2020.
  • [34] N. Ling and P. Vieu, Nonparametric modelling for functional data: selected survey and tracks for future, Statistics 52 (4), 934-949, 2018.
  • [35] S. Novo, G. Aneiros and P. Vieu. A kNN procedure in semiparametric functional data analysis, Statist. Probab. Lett. 17, 2021.
  • [36] J. Ramsay and B. Silverman, Functional Data Analysis (Second Edition), Spinger- Verlag, New York, 2005.
  • [37] H. Shang, Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density, Comput. Stat. 29 (3-4), 829-848, 2014.
  • [38] J. Zhang, Analysis of Variance for Functional Data, Monographs on Statistics and Applied Probability, CRC Press, 127, 2014.
  • [39] F. Zhao and B. Zhang, Testing linearity in functional partially linear models, Acta Math. Appl. Sin., Doi: 10.1007/s10255-023-1040-0, 2022.
  • [40] Z. Zhou and Z. Lin, Asymptotic normality of locally modelled regression estimator for functional data, J. Nonparametr. Stat. 28 (1), 116-131, 2016.
There are 40 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Kedir Nassima Houda 0009-0003-2796-5769

Benchikh Tawfik 0000-0003-2046-4104

Naceri Amina This is me 0009-0005-7557-2294

Fetitah Omar This is me 0000-0002-9312-7080

Project Number PRFU, C00L03UN220120220002
Early Pub Date March 11, 2024
Publication Date April 23, 2024
Published in Issue Year 2024 Volume: 53 Issue: 2

Cite

APA Nassima Houda, K., Tawfik, B., Amina, N., Omar, F. (2024). Local linear-$k$NN smoothing for semi-functional partial linear regression. Hacettepe Journal of Mathematics and Statistics, 53(2), 537-555. https://doi.org/10.15672/hujms.1294382
AMA Nassima Houda K, Tawfik B, Amina N, Omar F. Local linear-$k$NN smoothing for semi-functional partial linear regression. Hacettepe Journal of Mathematics and Statistics. April 2024;53(2):537-555. doi:10.15672/hujms.1294382
Chicago Nassima Houda, Kedir, Benchikh Tawfik, Naceri Amina, and Fetitah Omar. “Local Linear-$k$NN Smoothing for Semi-Functional Partial Linear Regression”. Hacettepe Journal of Mathematics and Statistics 53, no. 2 (April 2024): 537-55. https://doi.org/10.15672/hujms.1294382.
EndNote Nassima Houda K, Tawfik B, Amina N, Omar F (April 1, 2024) Local linear-$k$NN smoothing for semi-functional partial linear regression. Hacettepe Journal of Mathematics and Statistics 53 2 537–555.
IEEE K. Nassima Houda, B. Tawfik, N. Amina, and F. Omar, “Local linear-$k$NN smoothing for semi-functional partial linear regression”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 2, pp. 537–555, 2024, doi: 10.15672/hujms.1294382.
ISNAD Nassima Houda, Kedir et al. “Local Linear-$k$NN Smoothing for Semi-Functional Partial Linear Regression”. Hacettepe Journal of Mathematics and Statistics 53/2 (April 2024), 537-555. https://doi.org/10.15672/hujms.1294382.
JAMA Nassima Houda K, Tawfik B, Amina N, Omar F. Local linear-$k$NN smoothing for semi-functional partial linear regression. Hacettepe Journal of Mathematics and Statistics. 2024;53:537–555.
MLA Nassima Houda, Kedir et al. “Local Linear-$k$NN Smoothing for Semi-Functional Partial Linear Regression”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 2, 2024, pp. 537-55, doi:10.15672/hujms.1294382.
Vancouver Nassima Houda K, Tawfik B, Amina N, Omar F. Local linear-$k$NN smoothing for semi-functional partial linear regression. Hacettepe Journal of Mathematics and Statistics. 2024;53(2):537-55.