Research Article
BibTex RIS Cite

On sum annihilator ideals in Ore extensions

Year 2024, Volume: 53 Issue: 3, 704 - 713, 27.06.2024
https://doi.org/10.15672/hujms.1037521

Abstract

A ring $R$ is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of the intersection of any two left ideals is the sum of the two right annihilators. As a generalization of left IN-rings, a ring $R$ is called a right SA-ring if the sum of right annihilators of two ideals is a right annihilator of an ideal of $R$. It would be interesting to find conditions under which an Ore extension $R[x; \alpha, \delta]$ is IN and SA. In this paper, we will present some necessary and sufficient conditions for the Ore extension $R[x;\alpha, \delta]$ to be left IN or right SA. In addition, for an $(\alpha,\delta)$-compatible ring $R$, it is shown that: (i) If $S = R[x;\alpha,\delta]$ is a left IN-ring with ${\rm{Idm}}(R) ={\rm{Idm}}(R[x;\alpha, \delta])$, then $R$ is left McCoy. (ii) Every reduced left IN-ring with finitely many minimal prime ideals is a semiprime left Goldie ring. (iii) If $R$ is a commutative principal ideal ring, then $R$ and $R[x]$ are IN. (iv) If $R$ is a reduced ring and $n$ is a positive integer, then $R$ is right SA if and only if $R[x]/(x^{n+1})$ is right SA.

References

  • [1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26, 2265-2272, 1998.
  • [2] E. P. Armendariz, H. K. Koo and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15, 2633-2652, 1987.
  • [3] G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra 43, 2690-2702, 2015.
  • [4] G. F. Birkenmeier, M. Ghirati, A. Ghorbani, A. Naghdi and A. Taherifar, Corrigendum to: When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra 46 (10), 4174-4175, 2018.
  • [5] V. Camillo, W. K. Nicholson and M. F. Yousif, Ikeda-Nakayama rings, J. Algebra 226, 1001-1010, 2000.
  • [6] K. R. Goodearl and R. B. Warfield Jr, An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts 61, 2nd ed. Cambridge: Cambridge University Press, 2004.
  • [7] C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93, 253-266, 1985.
  • [8] E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12, 349-356, 2006.
  • [9] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107, 207-224, 2005.
  • [10] E. Hashemi, M. Hamidizadeh and A. Alhevaz, Some types of ring elements in Ore extensions over noncommutative rings, J. Algebra Appl. 16 (11), 1750201, 2017.
  • [11] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, 45-52, 2002.
  • [12] A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (3-4), 355-363, 1992.
  • [13] I. Kaplansky, Dual rings, Ann. of Math. 49, 689-701, 1948.
  • [14] A. Leroy and J. Matczuk, Goldie conditions for ore extensions over semiprime rings, Algebr. Represent. Theory 8 (5), 679-688, 2005.
  • [15] J. C. McConnell, J. C. Robson and L. W. Small, Noncommutative Noetherian Rings, Vol. 30. Providence, Rhode Island: American Mathematical Society, 2001.
  • [16] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49, 286-295, 1942.
  • [17] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298, 134-141, 2006.
  • [18] M. Paykanian, E. Hashemi and A. Alhevaz, On skew polynomials over Ikeda- Nakayama rings, Comm. Algebra 49 (9), 4038-4049, 2021.
  • [19] R. Wisbauer, M. F. Yousif and Y. Zhou, Ikeda-Nakayama modules, Beitr. Algebra Geom. 43, 111-119, 2002.
  • [20] O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton, 1960.
Year 2024, Volume: 53 Issue: 3, 704 - 713, 27.06.2024
https://doi.org/10.15672/hujms.1037521

Abstract

References

  • [1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26, 2265-2272, 1998.
  • [2] E. P. Armendariz, H. K. Koo and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15, 2633-2652, 1987.
  • [3] G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra 43, 2690-2702, 2015.
  • [4] G. F. Birkenmeier, M. Ghirati, A. Ghorbani, A. Naghdi and A. Taherifar, Corrigendum to: When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra 46 (10), 4174-4175, 2018.
  • [5] V. Camillo, W. K. Nicholson and M. F. Yousif, Ikeda-Nakayama rings, J. Algebra 226, 1001-1010, 2000.
  • [6] K. R. Goodearl and R. B. Warfield Jr, An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts 61, 2nd ed. Cambridge: Cambridge University Press, 2004.
  • [7] C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93, 253-266, 1985.
  • [8] E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12, 349-356, 2006.
  • [9] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107, 207-224, 2005.
  • [10] E. Hashemi, M. Hamidizadeh and A. Alhevaz, Some types of ring elements in Ore extensions over noncommutative rings, J. Algebra Appl. 16 (11), 1750201, 2017.
  • [11] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, 45-52, 2002.
  • [12] A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (3-4), 355-363, 1992.
  • [13] I. Kaplansky, Dual rings, Ann. of Math. 49, 689-701, 1948.
  • [14] A. Leroy and J. Matczuk, Goldie conditions for ore extensions over semiprime rings, Algebr. Represent. Theory 8 (5), 679-688, 2005.
  • [15] J. C. McConnell, J. C. Robson and L. W. Small, Noncommutative Noetherian Rings, Vol. 30. Providence, Rhode Island: American Mathematical Society, 2001.
  • [16] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49, 286-295, 1942.
  • [17] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298, 134-141, 2006.
  • [18] M. Paykanian, E. Hashemi and A. Alhevaz, On skew polynomials over Ikeda- Nakayama rings, Comm. Algebra 49 (9), 4038-4049, 2021.
  • [19] R. Wisbauer, M. F. Yousif and Y. Zhou, Ikeda-Nakayama modules, Beitr. Algebra Geom. 43, 111-119, 2002.
  • [20] O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton, 1960.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mahsa Paykanian

Ebrahim Hashemi 0000-0002-8673-9556

Abdollah Alhevaz This is me 0000-0001-6167-607X

Early Pub Date August 15, 2023
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Paykanian, M., Hashemi, E., & Alhevaz, A. (2024). On sum annihilator ideals in Ore extensions. Hacettepe Journal of Mathematics and Statistics, 53(3), 704-713. https://doi.org/10.15672/hujms.1037521
AMA Paykanian M, Hashemi E, Alhevaz A. On sum annihilator ideals in Ore extensions. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):704-713. doi:10.15672/hujms.1037521
Chicago Paykanian, Mahsa, Ebrahim Hashemi, and Abdollah Alhevaz. “On Sum Annihilator Ideals in Ore Extensions”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 704-13. https://doi.org/10.15672/hujms.1037521.
EndNote Paykanian M, Hashemi E, Alhevaz A (June 1, 2024) On sum annihilator ideals in Ore extensions. Hacettepe Journal of Mathematics and Statistics 53 3 704–713.
IEEE M. Paykanian, E. Hashemi, and A. Alhevaz, “On sum annihilator ideals in Ore extensions”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 704–713, 2024, doi: 10.15672/hujms.1037521.
ISNAD Paykanian, Mahsa et al. “On Sum Annihilator Ideals in Ore Extensions”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 704-713. https://doi.org/10.15672/hujms.1037521.
JAMA Paykanian M, Hashemi E, Alhevaz A. On sum annihilator ideals in Ore extensions. Hacettepe Journal of Mathematics and Statistics. 2024;53:704–713.
MLA Paykanian, Mahsa et al. “On Sum Annihilator Ideals in Ore Extensions”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 704-13, doi:10.15672/hujms.1037521.
Vancouver Paykanian M, Hashemi E, Alhevaz A. On sum annihilator ideals in Ore extensions. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):704-13.