Research Article
BibTex RIS Cite

Refinement of the classical Jensen inequality using finite sequences

Year 2024, Volume: 53 Issue: 3, 608 - 627, 27.06.2024
https://doi.org/10.15672/hujms.1270585

Abstract

This article is dedicated to a refinement of the classical Jensen inequality by virtue of some finite real sequences. Inequalities for various means are obtained from this refinement. Also, from the proposed refinement, the authors acquire some inequalities for Csiszâr $\Psi$- divergence and for Shannon and Zipf-Mandelbrot entropies. The refinement is further generalized through several finite real sequences.

References

  • [1] S.M. Ali and S.D. Silvey, A general class of coefficients of divergence of one distribution from another, J. R. Stat. Soc. Ser. B. Stat. Methodol. 28 (1), 131–142, 1966.
  • [2] Q.H. Ansari, C.S. Lalitha, and M. Mehta, Generalized convexity, nonsmooth variational inequalities, and nonsmooth optimization, Chapman and Hall/CRC, 2019.
  • [3] S.A. Azar, Jensen’s inequality in finance, Int. Adv. Econ. Res. 14, 433–440, 2008.
  • [4] S.I. Bradanović, More accurate majorization inequalities obtained via superquadraticity and convexity with application to entropies, Mediterr. J. Math. 18, Article ID 79, 2021.
  • [5] H. Budak, S. Khan, M.A. Ali, and Y.-M. Chu, Refinements of quantum Hermite- Hadamard type inequalities, Open Math. 19, 724–734, 2021.
  • [6] S.I. Butt, P. Agarwal, S. Yousaf, and J.L.G. Guirao, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl. 2022, Article ID 1, 2022.
  • [7] S.I. Butt, H. Budak, and K. Nonlaopon, New Quantum Mercer estimates of Simpson- Newton-like inequalities via convexity, Symmetry 14, Article ID 1935, 2022.
  • [8] S.I. Butt, J. Nasir, S. Qaisar, and K.M. Abualnaja, k-fractional variants of Hermite- Mercer-Type inequalities via s-convexity with applications, J. Funct. Spaces 2021, Article ID 5566360, 2021.
  • [9] M.J. Cloud, B.C. Drachman and L.P. Lebedev, Inequalities with Applications to Engineering, Springer: Cham Heidelberg New York Dordrecht London, 2014.
  • [10] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar. 2, 299–318, 1967.
  • [11] S.S. Dragomir, A new refinement of Jensen’s inequality in linear spaces with applications, Math. Comput. Model. 52 (9), 1497–1505, 2010.
  • [12] S.S. Dragomir, A refinement of Jensen’s inequality with applications for f-divergence measures, Taiwanese J. Math. 14, 153–164, 2010.
  • [13] S.S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces, Commun. Math. Anal. 15 (2), 1–14, 2013.
  • [14] S.S. Dragomir, J. Pečarić and L.E. Persson, Properties of some functionals related to Jensen’s inequality, Acta Math. Hungar. 70 (2), 129–143, 1996.
  • [15] L. Egghe and R. Rousseau, Introduction to informetrics: Quantitative methods in library, documentation and information science, Elsevier Science Publishers, 1990.
  • [16] W. Han, Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids 23, 279–293, 2018.
  • [17] L. Horváth, New refinements of the discrete Jensen’s inequality generated by finite or infinite permutations, Aequationes Math. 94, 1109–1121, 2020.
  • [18] L. Horváth, Extensions of recent combinatorial refinements of discrete and integral Jensen inequalities, Aequationes Math. 96, 381–401, 2022.
  • [19] L. Horváth, Ð. Pečarić, and J. Pečarić, Estimations of f-and Rényi divergences by using a cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc. 42 (3), 933–946, 2019.
  • [20] H. Kalsoom, M. Vivas-Corte, M. Zainul Abidin, M. Marwan, and Z.A. Khan, Montgomery identity and ostrowski-type inequalities for generalized quantum calculus through convexity and their applications, Symmetry 14, Article ID 1449, 2022.
  • [21] Z. Kayar, B. Kaymakçalan, and N.N. Pelen, Diamond alpha Bennett-Leindler type dynamic inequalities and their applications, Math. Meth. Appl. Sci. 45, 2797–2819, 2022.
  • [22] S. Khan, M. Adil Khan, S.I. Butt and Y.-M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ. 2020, Article ID 333, 2020.
  • [23] Z.A. Khan and K. Shah, Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales, J. Funct. Spaces 2021, Article ID 8734535, 2021.
  • [24] V. Lakshmikantham and A.S. Vatsala, Theory of Differential and Integral Inequalities with Initial Time Difference and Applications, Springer: Berlin, 1999.
  • [25] J.G. Liao and A. Berg, Sharpening Jensen’s inequality, Amer. Statist. 4, 1–4, 2018.
  • [26] Q. Lin, Jensen inequality for superlinear expectations, Stat. Probab. Lett. 151, 79–83, 2019.
  • [27] B. Manaris, D. Vaughan, C. Wagner, J. Romeron and R.B. Davis, Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music, in: Workshops on applications of Evolutionary Computation, Springer, Berlin, Heidelberg, 522–534, 2003.
  • [28] D.Y. Manin, Mandelbrot’s Model for Zipf’s Law: Can Mandelbrot’s model explain Zipf’s law for Language?, J. Quant. Linguist. 16 (3), 274–285, 2009.
  • [29] M.A. Montemurro, Beyond the Zipf-Mandelbrot law in quantitative linguistics, Phys. A 300 (3), 567–578, 2001.
  • [30] Ð. Mouillot and A. Lepretre, Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity, Environ. Monit. Assess. 63 (2), 279–295, 2000.
  • [31] L. Nikolova, L.-E Persson, and S. Varošanec, Continuous refinements of some Jensentype inequalities via strong convexity with applications, J. Inequal. Appl. 2022, Article ID 63, 2022.
  • [32] S. Rashid, M.A. Noor, K.I. Noor, F. Safdar and Y.-M. Chu, Hermite-Hadamard type inequalities for the class of convex functions on time scale, Mathematics 7, Article ID 956, 2019.
  • [33] M. Rodić, Some generalizations of the Jensen-type inequalities with applications, Axioms 11, Article ID 227, 2022.
  • [34] M. Rodić, On the converse Jensen-type inequality for generalized f-divergences and Zipf-Mandelbrot Law, Mathematics 10, Article no. 947, 2022.
  • [35] F. Rubab, H. Nabi, and A.R. Khan, Generalization and refinements of Jensen inequality, J. Math. Anal. 12 (5), 1–27, 2021.
  • [36] T. Saeed, M. Adil Khan, and H. Ullah, Refinements of Jensen’s inequality and applications, AIMS Math. 7 (4), 5328–5346, 2022.
  • [37] Z.M.M.M. Sayed, M. Adil Khan, S. Khan, J. Pečarić, A refinement of the integral Jensen inequality pertaining certain functions with applications, J. Funct. Spaces 2022, Article ID 8396644, 2022.
  • [38] Y. Sayyari, H. Barsam, A.R. Sattarzadeh, On new refinement of the Jensen inequality using uniformly convex functions with applications, Appl. Anal. 2023. DOI: 10.1080/00036811.2023.2171873.
  • [39] Z.K. Silagadze, Citations and the Zipf-Mandelbrot law, Complex Syst. 11, 487–499, 1997.
  • [40] M.-K. Wang, Y.-M. Chu and W. Zhang, Monotonicity and inequalities involving zerobalanced hypergeometric function, Math. Inequal. Appl. 22 (2), 601–617, 2019.
  • [41] T.-H. Zhao, Z.-Y. He, and Y.-M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math. 5 (6), 6479–6495, 2020.
  • [42] Z. Zhongyi, G. Farid, and K. Mahreen, Inequalities for unified integral operators via strongly $(\alpha$, $h-m)$-convexity, J. Funct. Spaces 2021, Article ID 6675826, 2021.
Year 2024, Volume: 53 Issue: 3, 608 - 627, 27.06.2024
https://doi.org/10.15672/hujms.1270585

Abstract

References

  • [1] S.M. Ali and S.D. Silvey, A general class of coefficients of divergence of one distribution from another, J. R. Stat. Soc. Ser. B. Stat. Methodol. 28 (1), 131–142, 1966.
  • [2] Q.H. Ansari, C.S. Lalitha, and M. Mehta, Generalized convexity, nonsmooth variational inequalities, and nonsmooth optimization, Chapman and Hall/CRC, 2019.
  • [3] S.A. Azar, Jensen’s inequality in finance, Int. Adv. Econ. Res. 14, 433–440, 2008.
  • [4] S.I. Bradanović, More accurate majorization inequalities obtained via superquadraticity and convexity with application to entropies, Mediterr. J. Math. 18, Article ID 79, 2021.
  • [5] H. Budak, S. Khan, M.A. Ali, and Y.-M. Chu, Refinements of quantum Hermite- Hadamard type inequalities, Open Math. 19, 724–734, 2021.
  • [6] S.I. Butt, P. Agarwal, S. Yousaf, and J.L.G. Guirao, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl. 2022, Article ID 1, 2022.
  • [7] S.I. Butt, H. Budak, and K. Nonlaopon, New Quantum Mercer estimates of Simpson- Newton-like inequalities via convexity, Symmetry 14, Article ID 1935, 2022.
  • [8] S.I. Butt, J. Nasir, S. Qaisar, and K.M. Abualnaja, k-fractional variants of Hermite- Mercer-Type inequalities via s-convexity with applications, J. Funct. Spaces 2021, Article ID 5566360, 2021.
  • [9] M.J. Cloud, B.C. Drachman and L.P. Lebedev, Inequalities with Applications to Engineering, Springer: Cham Heidelberg New York Dordrecht London, 2014.
  • [10] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar. 2, 299–318, 1967.
  • [11] S.S. Dragomir, A new refinement of Jensen’s inequality in linear spaces with applications, Math. Comput. Model. 52 (9), 1497–1505, 2010.
  • [12] S.S. Dragomir, A refinement of Jensen’s inequality with applications for f-divergence measures, Taiwanese J. Math. 14, 153–164, 2010.
  • [13] S.S. Dragomir, A generalization of f-divergence measure to convex functions defined on linear spaces, Commun. Math. Anal. 15 (2), 1–14, 2013.
  • [14] S.S. Dragomir, J. Pečarić and L.E. Persson, Properties of some functionals related to Jensen’s inequality, Acta Math. Hungar. 70 (2), 129–143, 1996.
  • [15] L. Egghe and R. Rousseau, Introduction to informetrics: Quantitative methods in library, documentation and information science, Elsevier Science Publishers, 1990.
  • [16] W. Han, Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics, Math. Mech. Solids 23, 279–293, 2018.
  • [17] L. Horváth, New refinements of the discrete Jensen’s inequality generated by finite or infinite permutations, Aequationes Math. 94, 1109–1121, 2020.
  • [18] L. Horváth, Extensions of recent combinatorial refinements of discrete and integral Jensen inequalities, Aequationes Math. 96, 381–401, 2022.
  • [19] L. Horváth, Ð. Pečarić, and J. Pečarić, Estimations of f-and Rényi divergences by using a cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc. 42 (3), 933–946, 2019.
  • [20] H. Kalsoom, M. Vivas-Corte, M. Zainul Abidin, M. Marwan, and Z.A. Khan, Montgomery identity and ostrowski-type inequalities for generalized quantum calculus through convexity and their applications, Symmetry 14, Article ID 1449, 2022.
  • [21] Z. Kayar, B. Kaymakçalan, and N.N. Pelen, Diamond alpha Bennett-Leindler type dynamic inequalities and their applications, Math. Meth. Appl. Sci. 45, 2797–2819, 2022.
  • [22] S. Khan, M. Adil Khan, S.I. Butt and Y.-M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ. 2020, Article ID 333, 2020.
  • [23] Z.A. Khan and K. Shah, Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales, J. Funct. Spaces 2021, Article ID 8734535, 2021.
  • [24] V. Lakshmikantham and A.S. Vatsala, Theory of Differential and Integral Inequalities with Initial Time Difference and Applications, Springer: Berlin, 1999.
  • [25] J.G. Liao and A. Berg, Sharpening Jensen’s inequality, Amer. Statist. 4, 1–4, 2018.
  • [26] Q. Lin, Jensen inequality for superlinear expectations, Stat. Probab. Lett. 151, 79–83, 2019.
  • [27] B. Manaris, D. Vaughan, C. Wagner, J. Romeron and R.B. Davis, Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music, in: Workshops on applications of Evolutionary Computation, Springer, Berlin, Heidelberg, 522–534, 2003.
  • [28] D.Y. Manin, Mandelbrot’s Model for Zipf’s Law: Can Mandelbrot’s model explain Zipf’s law for Language?, J. Quant. Linguist. 16 (3), 274–285, 2009.
  • [29] M.A. Montemurro, Beyond the Zipf-Mandelbrot law in quantitative linguistics, Phys. A 300 (3), 567–578, 2001.
  • [30] Ð. Mouillot and A. Lepretre, Introduction of relative abundance distribution (RAD) indices, estimated from the rank-frequency diagrams (RFD), to assess changes in community diversity, Environ. Monit. Assess. 63 (2), 279–295, 2000.
  • [31] L. Nikolova, L.-E Persson, and S. Varošanec, Continuous refinements of some Jensentype inequalities via strong convexity with applications, J. Inequal. Appl. 2022, Article ID 63, 2022.
  • [32] S. Rashid, M.A. Noor, K.I. Noor, F. Safdar and Y.-M. Chu, Hermite-Hadamard type inequalities for the class of convex functions on time scale, Mathematics 7, Article ID 956, 2019.
  • [33] M. Rodić, Some generalizations of the Jensen-type inequalities with applications, Axioms 11, Article ID 227, 2022.
  • [34] M. Rodić, On the converse Jensen-type inequality for generalized f-divergences and Zipf-Mandelbrot Law, Mathematics 10, Article no. 947, 2022.
  • [35] F. Rubab, H. Nabi, and A.R. Khan, Generalization and refinements of Jensen inequality, J. Math. Anal. 12 (5), 1–27, 2021.
  • [36] T. Saeed, M. Adil Khan, and H. Ullah, Refinements of Jensen’s inequality and applications, AIMS Math. 7 (4), 5328–5346, 2022.
  • [37] Z.M.M.M. Sayed, M. Adil Khan, S. Khan, J. Pečarić, A refinement of the integral Jensen inequality pertaining certain functions with applications, J. Funct. Spaces 2022, Article ID 8396644, 2022.
  • [38] Y. Sayyari, H. Barsam, A.R. Sattarzadeh, On new refinement of the Jensen inequality using uniformly convex functions with applications, Appl. Anal. 2023. DOI: 10.1080/00036811.2023.2171873.
  • [39] Z.K. Silagadze, Citations and the Zipf-Mandelbrot law, Complex Syst. 11, 487–499, 1997.
  • [40] M.-K. Wang, Y.-M. Chu and W. Zhang, Monotonicity and inequalities involving zerobalanced hypergeometric function, Math. Inequal. Appl. 22 (2), 601–617, 2019.
  • [41] T.-H. Zhao, Z.-Y. He, and Y.-M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math. 5 (6), 6479–6495, 2020.
  • [42] Z. Zhongyi, G. Farid, and K. Mahreen, Inequalities for unified integral operators via strongly $(\alpha$, $h-m)$-convexity, J. Funct. Spaces 2021, Article ID 6675826, 2021.
There are 42 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zaid Mohammed Mohammed Mahdi Sayed 0000-0002-0545-5333

Muhammad Adil Khan 0000-0001-5373-4663

Shahid Khan 0000-0003-1966-3130

Josip Pecaric 0000-0002-5510-2085

Early Pub Date January 10, 2024
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Sayed, Z. M. M. M., Adil Khan, M., Khan, S., Pecaric, J. (2024). Refinement of the classical Jensen inequality using finite sequences. Hacettepe Journal of Mathematics and Statistics, 53(3), 608-627. https://doi.org/10.15672/hujms.1270585
AMA Sayed ZMMM, Adil Khan M, Khan S, Pecaric J. Refinement of the classical Jensen inequality using finite sequences. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):608-627. doi:10.15672/hujms.1270585
Chicago Sayed, Zaid Mohammed Mohammed Mahdi, Muhammad Adil Khan, Shahid Khan, and Josip Pecaric. “Refinement of the Classical Jensen Inequality Using Finite Sequences”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 608-27. https://doi.org/10.15672/hujms.1270585.
EndNote Sayed ZMMM, Adil Khan M, Khan S, Pecaric J (June 1, 2024) Refinement of the classical Jensen inequality using finite sequences. Hacettepe Journal of Mathematics and Statistics 53 3 608–627.
IEEE Z. M. M. M. Sayed, M. Adil Khan, S. Khan, and J. Pecaric, “Refinement of the classical Jensen inequality using finite sequences”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 608–627, 2024, doi: 10.15672/hujms.1270585.
ISNAD Sayed, Zaid Mohammed Mohammed Mahdi et al. “Refinement of the Classical Jensen Inequality Using Finite Sequences”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 608-627. https://doi.org/10.15672/hujms.1270585.
JAMA Sayed ZMMM, Adil Khan M, Khan S, Pecaric J. Refinement of the classical Jensen inequality using finite sequences. Hacettepe Journal of Mathematics and Statistics. 2024;53:608–627.
MLA Sayed, Zaid Mohammed Mohammed Mahdi et al. “Refinement of the Classical Jensen Inequality Using Finite Sequences”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 608-27, doi:10.15672/hujms.1270585.
Vancouver Sayed ZMMM, Adil Khan M, Khan S, Pecaric J. Refinement of the classical Jensen inequality using finite sequences. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):608-27.