Research Article
BibTex RIS Cite

Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension

Year 2024, Volume: 53 Issue: 3, 637 - 651, 27.06.2024
https://doi.org/10.15672/hujms.1277665

Abstract

We present a new and efficient algorithm to compute affine equivalences and symmetries between two trigonometric curves in an arbitrary dimension. The algorithm benefits from the power of invariance and polynomial gcd and factoring without solving any system of equations. The algorithm is implemented in MAPLE, and extensive experimentations demonstrating the efficiency of the method are given.

Supporting Institution

TUBITAK

Project Number

121C421

Thanks

Uğur Gözütok is supported by the grant 121C421, in the scope of 2218-National Postdoctoral Research Fellowship Program, from TUBITAK (The Scientific and Technological Research Council of Türkiye).

References

  • [1] J.G. Alcázar, U. Gözütok, H.A. Çoban, and C. Hermoso, Detecting affine equivalences between implicit planar algebraic curves, Acta Appl. Math. 182, 2, 2022.
  • [2] J.G. Alcázar, C. Hermoso, and G. Muntingh, Detecting similarity of rational plane curves, J. Comput. Appl. Math. 269, 1–13, 2014.
  • [3] J.G. Alcázar, C. Hermoso, and G. Muntingh, Detecting symmetries of rational plane and space curves, Comput. Aided Geom. Des. 31, 199–209, 2014.
  • [4] J.G. Alcázar and E. Quintero, Affine equivalences of trigonometric curves, Acta Appl. Math. 170, 691–708, 2020.
  • [5] A. Berner, M. Bokeloh, M.Wand, A. Schilling, and H.P. Seidel, A graph-based approach to symmetry detection, in: Symposium on Volume and Point Based Graphics, 1–8, 2008.
  • [6] M. Bizzarri, M. Lávička, and J. Vršek, Computing projective equivalences of special algebraic varieties, J Comput. Appl. Math. 367, 112438, 2020.
  • [7] M. Bizzarri, M. Lávička, and J. Vršek, Symmetries of discrete curves and point clouds via trigonometric interpolation, J Comput. Appl. Math. 408, 114124, 2022.
  • [8] M. Bokeloh, A. Berner, M. Wand, H.P. Seidel, and A. Schilling, Symmetry detection using line features, Comput. Graph Forum 28 (2), 697–706, 2009.
  • [9] M. Boutin, Numerically invariant signature curves, Int. J. Comput. Vis. 40 (3), 235– 248, 2000.
  • [10] P. Brass and C. Knauer, Testing congruence and symmetry for general 3-dimensional objects, Comput. Geom. 27, 3–11, 2004.
  • [11] U. Gözütok, H.A. Çoban, Y. Sarolu, and J.G. Alcázar, A new method to detect projective equivalences and symmetries of rational 3D curves, J. Comput. Appl. Math. 419, 114782, 2023.
  • [12] https://www.ugurgozutok.com/academics/software
  • [13] M. Hauer and B. Jüttler, Projective and affine symmetries and equivalences of rational curves in arbitrary dimension, J. Symb. Comput. 87, 68–86, 2018.
  • [14] M. Hauer, B. Jüttler, and J. Schicho, Projective and affine symmetries and equivalences of rational and polynomial surfaces, J. Comput. Appl. Math. 349, 424–437, 2018.
  • [15] H. Hong, Implicitization of curves parametrized by generalized trigonometric polynomials, in: Proceedings of Applied Algebra, Algebraic Algorithms and Error Correcting Codes (AAECC-11), 285–296, 1995.
  • [16] H. Hong and J. Schicho, Algorithms for trigonometric curves (simplification, implicitization, parameterization), J. Symb. Comput. 26 (3), 279–300, 1998.
  • [17] E.A. Hook, Multiple points on Lissajous’s curves in two and three dimensions, Ann. Math., Second Series, 4 (2), 67–88, 1903.
  • [18] Z. Huang and F.S. Cohen, Affine-invariant B-spline moments for curve matching, IEEE Trans. Image Process 5 (10), 1473–1480, 1996.
  • [19] J.D. Lawrence, A catalog of special plane curves, New York, Dover, pp. 178-179 and 181-183, 1972.
  • [20] P. Lebmeir and J. Richter-Gebert, Rotations, translations and symmetry detection for complexified curves, Comput. Aided Geom. Des. 25, 707–719, 2008.
  • [21] G. Loy and J. Eklundh, Detecting symmetry and symmetric constellations of features, in: Proceedings ECCV 2006, 9th European Conference on Computer Vision, 508–521, 2006.
  • [22] Maple™, Maplesoft, a Division of Waterloo Maple Inc., Waterloo, Ontario, 2021.
  • [23] N.J. Mitra, L.J. Guibas, and M. Pauly, Partial and approximate symmetry detection for 3D geometry, ACM Trans. Graph 25 (3), 560–568, 2006.
  • [24] K. Palmer, T. Ridgway, O. Al-Rawi, I. Johnson, and M. Poullis, Lissajous Figures: An Engineering Tool for Root Cause Analysis of Individual CasesA Preliminary Concept, J Extra Corpor. Technol. 43 (3), 153–156, 2011.
  • [25] R. Sulanke, The fundamental theorem for curves in the n-dimensional Euclidean space, 2020, http://www-irm.mathematik.hu-berlin.de/~sulanke/ diffgeo/euklid/ECTh.pdf.
  • [26] C. Sun and J. Sherrah, 3D symmetry detection using the extended Gaussian image, IEEE Trans. Pattern Anal. Mach. Intell. 19, 164–168, 1997.
  • [27] H. Yalçn, M. Ünel, and W. Wolowich, Implicitization of parametric curves by matrix annihilation, Int. J. Comput. Vis. 54, 105–115, 2003.
Year 2024, Volume: 53 Issue: 3, 637 - 651, 27.06.2024
https://doi.org/10.15672/hujms.1277665

Abstract

Project Number

121C421

References

  • [1] J.G. Alcázar, U. Gözütok, H.A. Çoban, and C. Hermoso, Detecting affine equivalences between implicit planar algebraic curves, Acta Appl. Math. 182, 2, 2022.
  • [2] J.G. Alcázar, C. Hermoso, and G. Muntingh, Detecting similarity of rational plane curves, J. Comput. Appl. Math. 269, 1–13, 2014.
  • [3] J.G. Alcázar, C. Hermoso, and G. Muntingh, Detecting symmetries of rational plane and space curves, Comput. Aided Geom. Des. 31, 199–209, 2014.
  • [4] J.G. Alcázar and E. Quintero, Affine equivalences of trigonometric curves, Acta Appl. Math. 170, 691–708, 2020.
  • [5] A. Berner, M. Bokeloh, M.Wand, A. Schilling, and H.P. Seidel, A graph-based approach to symmetry detection, in: Symposium on Volume and Point Based Graphics, 1–8, 2008.
  • [6] M. Bizzarri, M. Lávička, and J. Vršek, Computing projective equivalences of special algebraic varieties, J Comput. Appl. Math. 367, 112438, 2020.
  • [7] M. Bizzarri, M. Lávička, and J. Vršek, Symmetries of discrete curves and point clouds via trigonometric interpolation, J Comput. Appl. Math. 408, 114124, 2022.
  • [8] M. Bokeloh, A. Berner, M. Wand, H.P. Seidel, and A. Schilling, Symmetry detection using line features, Comput. Graph Forum 28 (2), 697–706, 2009.
  • [9] M. Boutin, Numerically invariant signature curves, Int. J. Comput. Vis. 40 (3), 235– 248, 2000.
  • [10] P. Brass and C. Knauer, Testing congruence and symmetry for general 3-dimensional objects, Comput. Geom. 27, 3–11, 2004.
  • [11] U. Gözütok, H.A. Çoban, Y. Sarolu, and J.G. Alcázar, A new method to detect projective equivalences and symmetries of rational 3D curves, J. Comput. Appl. Math. 419, 114782, 2023.
  • [12] https://www.ugurgozutok.com/academics/software
  • [13] M. Hauer and B. Jüttler, Projective and affine symmetries and equivalences of rational curves in arbitrary dimension, J. Symb. Comput. 87, 68–86, 2018.
  • [14] M. Hauer, B. Jüttler, and J. Schicho, Projective and affine symmetries and equivalences of rational and polynomial surfaces, J. Comput. Appl. Math. 349, 424–437, 2018.
  • [15] H. Hong, Implicitization of curves parametrized by generalized trigonometric polynomials, in: Proceedings of Applied Algebra, Algebraic Algorithms and Error Correcting Codes (AAECC-11), 285–296, 1995.
  • [16] H. Hong and J. Schicho, Algorithms for trigonometric curves (simplification, implicitization, parameterization), J. Symb. Comput. 26 (3), 279–300, 1998.
  • [17] E.A. Hook, Multiple points on Lissajous’s curves in two and three dimensions, Ann. Math., Second Series, 4 (2), 67–88, 1903.
  • [18] Z. Huang and F.S. Cohen, Affine-invariant B-spline moments for curve matching, IEEE Trans. Image Process 5 (10), 1473–1480, 1996.
  • [19] J.D. Lawrence, A catalog of special plane curves, New York, Dover, pp. 178-179 and 181-183, 1972.
  • [20] P. Lebmeir and J. Richter-Gebert, Rotations, translations and symmetry detection for complexified curves, Comput. Aided Geom. Des. 25, 707–719, 2008.
  • [21] G. Loy and J. Eklundh, Detecting symmetry and symmetric constellations of features, in: Proceedings ECCV 2006, 9th European Conference on Computer Vision, 508–521, 2006.
  • [22] Maple™, Maplesoft, a Division of Waterloo Maple Inc., Waterloo, Ontario, 2021.
  • [23] N.J. Mitra, L.J. Guibas, and M. Pauly, Partial and approximate symmetry detection for 3D geometry, ACM Trans. Graph 25 (3), 560–568, 2006.
  • [24] K. Palmer, T. Ridgway, O. Al-Rawi, I. Johnson, and M. Poullis, Lissajous Figures: An Engineering Tool for Root Cause Analysis of Individual CasesA Preliminary Concept, J Extra Corpor. Technol. 43 (3), 153–156, 2011.
  • [25] R. Sulanke, The fundamental theorem for curves in the n-dimensional Euclidean space, 2020, http://www-irm.mathematik.hu-berlin.de/~sulanke/ diffgeo/euklid/ECTh.pdf.
  • [26] C. Sun and J. Sherrah, 3D symmetry detection using the extended Gaussian image, IEEE Trans. Pattern Anal. Mach. Intell. 19, 164–168, 1997.
  • [27] H. Yalçn, M. Ünel, and W. Wolowich, Implicitization of parametric curves by matrix annihilation, Int. J. Comput. Vis. 54, 105–115, 2003.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Uğur Gözütok 0000-0002-6072-3134

Project Number 121C421
Early Pub Date August 15, 2023
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Gözütok, U. (2024). Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension. Hacettepe Journal of Mathematics and Statistics, 53(3), 637-651. https://doi.org/10.15672/hujms.1277665
AMA Gözütok U. Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):637-651. doi:10.15672/hujms.1277665
Chicago Gözütok, Uğur. “Computing Affine Equivalences and Symmetries of Trigonometric Curves in Arbitrary Dimension”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 637-51. https://doi.org/10.15672/hujms.1277665.
EndNote Gözütok U (June 1, 2024) Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension. Hacettepe Journal of Mathematics and Statistics 53 3 637–651.
IEEE U. Gözütok, “Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 637–651, 2024, doi: 10.15672/hujms.1277665.
ISNAD Gözütok, Uğur. “Computing Affine Equivalences and Symmetries of Trigonometric Curves in Arbitrary Dimension”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 637-651. https://doi.org/10.15672/hujms.1277665.
JAMA Gözütok U. Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension. Hacettepe Journal of Mathematics and Statistics. 2024;53:637–651.
MLA Gözütok, Uğur. “Computing Affine Equivalences and Symmetries of Trigonometric Curves in Arbitrary Dimension”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 637-51, doi:10.15672/hujms.1277665.
Vancouver Gözütok U. Computing affine equivalences and symmetries of trigonometric curves in arbitrary dimension. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):637-51.