Year 2024,
Volume: 53 Issue: 4, 915 - 925, 27.08.2024
Mohammad Ali Abolfathi
,
Ali Ebadian
,
Ali Jabbari
References
- [1] F. Abtahi, Z. Kamali and M. Toutounchi, The Bochner-Schoenberg-Eberlein property
for vector-valued Lipschitz algebras, J. Math. Anal. Appl. 479 (1), 1172-1181, 2019.
- [2] N. Alizadeh, S. Ostadbashi, A. Ebadian and A. Jabbari, The BochnerSchoenbergEberlain
property of extensions of Banach algebras and Banach modules, Bull. Aust.
Math. Soc. 105 (1), 134-145, 2022.
- [3] P.A. Dabhi, Multipliers of perturued Cartesian product with an application to BSEproperty,
Acta Math. Hungar. 149 (1), 58-66, 2016.
- [4] P.A. Dabhi and R.S. Upadhyay, The Semigroup Algebra $\ell^1(\mathbb{Z}^2, \max)$ is a Bochner-
SchoenbergEberlein (BSE) Algebra, Mediterr. J. Math. 16 (1), 12, 2019.
- [5] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
The basic properties, J. Algebra Appl. 6, 443-459, 2007.
- [6] M. Daws, Multipliers, self-induced and dual Banach algebras, Dissert. Math. 470,
1-62, 2010.
- [7] A. Ebadian and A. Jabbari, Biprojectivity and biflatness of amalgamated duplication
of Banach algebras, J. Algebra Appl. 19 (7), 2050132, 2020.
- [8] A. Ebadian and A. Jabbari, $C^*$-algebras defined by amalgamated duplication of $C^*$-
algebras, J. Algebra Appl. 20 (2), 2150019, 2021.
- [9] A. Ebadian and A. Jabbari, The BochnerSchoenbergEberlein property for amalgamated
duplication of Banach algebras, J. Algebra Appl. 21 (8), 2250155, 2022.
- [10] M. Essmaili, A. Rejali and A. Salehi Marzijarani, Biprojectivity of generalized module
extension and second dual of Banach algebras, J. Algebra Appl. 21 (4), 2250070, 2022.
- [11] M. Fozouni and M. Nemati, BSE-property for some certain Segal and Banach algebras,
Mediterr. J. Math. 16 (2), 38, 2019.
- [12] J. Inoue and S.E. Takahasi, Segal algebras in commutative Banach algebras, Rocky
Mountain J. Math. 44, 539-589, 2014.
- [13] H. Javanshiri and M. Nemati, Amalgamated duplication of the Banach algebra $\mathfrak{A}$ along
a $\mathfrak{A}$-bimodule $\mathcal{A}$, J. Algebra Appl. 17 (9), 1850169-1-1850169-21, 2018.
- [14] Z. Kamali and F. Abtahi, The BochnerSchoenbergEberlein property for vector-valued
$\ell^p$-spaces, Mediterr. J. Math. 17 (3), 94, 2020.
- [15] Z. Kamali and M. Lashkarizadeh Bami, Bochner-Schoenberg-Eberlein property for
abstract Segal algebras, Proc. Jpn. Acad. (Ser A) 89, 107-110, 2013.
- [16] Z. Kamali and M. Lashkarizadeh Bami, The multiplier algebra and BSE property of
the direct sum of Banach algebras, Bull. Aust. Math. Soc. 88, 250-258, 2013.
- [17] Z. Kamali and M. Lashkarizadeh, The BochnerSchoenbergEberlein property for
$L^1(\mathbb{R}^+)$, J. Fourier Anal. Appl. 20 (2), 225-233, 2014.
- [18] Z. Kamali and M. Lashkarizadeh, A characterization of the $L^\infty$-representation algebra
$R(S)$ of a foundation semigroup and its application to BSE algebras, Proc. Jpn. Acad.
Ser. A Math. Sci. 92 (5), 59-63, 2016.
- [19] Z. Kamali and M. Lashkarizadeh, The BochnerSchoenbergEberlein property for totally
ordered semigroup algebras, J. Fourier Anal. Appl. 22 (6), 1225-1234, 2016.
- [20] E. Kaniuth, The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain
Banach algebra products, Canad. J. Math. 67, 827-847, 2015.
- [21] E. Kaniuth and A. Ülger, The BochnerSchoenbergEberlein property for commutative
Banach algebras, especially Fourier and FourierStieltjes algebras, Trans. Amer. Math.
Soc. 362, 4331-4356, 2010.
- [22] R. Larsen, An Introduction to the Theorey of Multipliers, Springer, New York, 1971.
- [23] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
- [24] S.-E. Takahasi, BSE Banach modules and multipliers, J. Funct. Anal. 125, 67-68,
1994.
- [25] S.-E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a
BochnerSchoenbergEberlein-type theorem, Proc. Amer. Math. Soc. 110, 149158, 1990.
- [26] S.-E. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities,
Math. Japonica 37, 47-52, 1992.
The Bochner-Schoenberg-Eberlein module property for amalgamated duplication of Banach algebras
Year 2024,
Volume: 53 Issue: 4, 915 - 925, 27.08.2024
Mohammad Ali Abolfathi
,
Ali Ebadian
,
Ali Jabbari
Abstract
The Bochner-Schoenberg-Eberlein module property on commutative Banach algebras is a property related to extensions of multipliers on Banach algebras to module morphisms from Banach algebras into Banach modules. In this paper, we answer the problem (1) raised in [J. Algebra Appl., 21(8) (2022), 2250155, DOI: 10.1142/S0219498822501559]. We show that the Banach $\mathcal{A}\rtimes\mathfrak{A}$-module $X\times Y$ ($X$ is a Banach $\mathcal{A},\mathfrak{A}$-module and $Y$ is a Banach $\mathfrak{A}$-module) has a BSE-module property if and only if $X$ is a BSE Banach $\mathcal{A},\mathfrak{A}$-module and $Y$ is a BSE Banach $\mathfrak{A}$-module.
References
- [1] F. Abtahi, Z. Kamali and M. Toutounchi, The Bochner-Schoenberg-Eberlein property
for vector-valued Lipschitz algebras, J. Math. Anal. Appl. 479 (1), 1172-1181, 2019.
- [2] N. Alizadeh, S. Ostadbashi, A. Ebadian and A. Jabbari, The BochnerSchoenbergEberlain
property of extensions of Banach algebras and Banach modules, Bull. Aust.
Math. Soc. 105 (1), 134-145, 2022.
- [3] P.A. Dabhi, Multipliers of perturued Cartesian product with an application to BSEproperty,
Acta Math. Hungar. 149 (1), 58-66, 2016.
- [4] P.A. Dabhi and R.S. Upadhyay, The Semigroup Algebra $\ell^1(\mathbb{Z}^2, \max)$ is a Bochner-
SchoenbergEberlein (BSE) Algebra, Mediterr. J. Math. 16 (1), 12, 2019.
- [5] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
The basic properties, J. Algebra Appl. 6, 443-459, 2007.
- [6] M. Daws, Multipliers, self-induced and dual Banach algebras, Dissert. Math. 470,
1-62, 2010.
- [7] A. Ebadian and A. Jabbari, Biprojectivity and biflatness of amalgamated duplication
of Banach algebras, J. Algebra Appl. 19 (7), 2050132, 2020.
- [8] A. Ebadian and A. Jabbari, $C^*$-algebras defined by amalgamated duplication of $C^*$-
algebras, J. Algebra Appl. 20 (2), 2150019, 2021.
- [9] A. Ebadian and A. Jabbari, The BochnerSchoenbergEberlein property for amalgamated
duplication of Banach algebras, J. Algebra Appl. 21 (8), 2250155, 2022.
- [10] M. Essmaili, A. Rejali and A. Salehi Marzijarani, Biprojectivity of generalized module
extension and second dual of Banach algebras, J. Algebra Appl. 21 (4), 2250070, 2022.
- [11] M. Fozouni and M. Nemati, BSE-property for some certain Segal and Banach algebras,
Mediterr. J. Math. 16 (2), 38, 2019.
- [12] J. Inoue and S.E. Takahasi, Segal algebras in commutative Banach algebras, Rocky
Mountain J. Math. 44, 539-589, 2014.
- [13] H. Javanshiri and M. Nemati, Amalgamated duplication of the Banach algebra $\mathfrak{A}$ along
a $\mathfrak{A}$-bimodule $\mathcal{A}$, J. Algebra Appl. 17 (9), 1850169-1-1850169-21, 2018.
- [14] Z. Kamali and F. Abtahi, The BochnerSchoenbergEberlein property for vector-valued
$\ell^p$-spaces, Mediterr. J. Math. 17 (3), 94, 2020.
- [15] Z. Kamali and M. Lashkarizadeh Bami, Bochner-Schoenberg-Eberlein property for
abstract Segal algebras, Proc. Jpn. Acad. (Ser A) 89, 107-110, 2013.
- [16] Z. Kamali and M. Lashkarizadeh Bami, The multiplier algebra and BSE property of
the direct sum of Banach algebras, Bull. Aust. Math. Soc. 88, 250-258, 2013.
- [17] Z. Kamali and M. Lashkarizadeh, The BochnerSchoenbergEberlein property for
$L^1(\mathbb{R}^+)$, J. Fourier Anal. Appl. 20 (2), 225-233, 2014.
- [18] Z. Kamali and M. Lashkarizadeh, A characterization of the $L^\infty$-representation algebra
$R(S)$ of a foundation semigroup and its application to BSE algebras, Proc. Jpn. Acad.
Ser. A Math. Sci. 92 (5), 59-63, 2016.
- [19] Z. Kamali and M. Lashkarizadeh, The BochnerSchoenbergEberlein property for totally
ordered semigroup algebras, J. Fourier Anal. Appl. 22 (6), 1225-1234, 2016.
- [20] E. Kaniuth, The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain
Banach algebra products, Canad. J. Math. 67, 827-847, 2015.
- [21] E. Kaniuth and A. Ülger, The BochnerSchoenbergEberlein property for commutative
Banach algebras, especially Fourier and FourierStieltjes algebras, Trans. Amer. Math.
Soc. 362, 4331-4356, 2010.
- [22] R. Larsen, An Introduction to the Theorey of Multipliers, Springer, New York, 1971.
- [23] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
- [24] S.-E. Takahasi, BSE Banach modules and multipliers, J. Funct. Anal. 125, 67-68,
1994.
- [25] S.-E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a
BochnerSchoenbergEberlein-type theorem, Proc. Amer. Math. Soc. 110, 149158, 1990.
- [26] S.-E. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities,
Math. Japonica 37, 47-52, 1992.