Research Article
BibTex RIS Cite

On the recent-$k$-record of discrete random variables

Year 2024, Volume: 53 Issue: 5, 1408 - 1418, 15.10.2024
https://doi.org/10.15672/hujms.1221343

Abstract

Let $X_1,~X_2,\cdots$ be a sequence of independent and identically distributed random variables which are supposed to be observed in sequence. The $n$th value in the sequence is a $k$-record value if exactly $k$ of the first $n$ values (including $X_n$) are at least as large as it. Let ${\bf R}_k$ denote the ordered set of $k$-record values. The famous Ignatov's Theorem states that the random sets ${\bf R}_k(k=1,2,\cdots)$ are independent with common distribution. We introduce one new record named recent-$k$-record in this paper: $X_n$ is a $j$-recent-k-record if there are exactly $j$ values at least as large as $X_n$ in $X_{n-k},~X_{n-k+1},\cdots,~X_{n-1}$. It turns out that recent-k-record brings many interesting problems and some novel properties such as prediction rule and Poisson approximation are proved in this paper. One application named "No Good Record" via the Lov{\'a}sz Local Lemma is also provided. We conclude this paper with some possible extensions for future work.

References

  • [1] M. Ahsanullah and V.B. Nevzorov, Records via probability theory, Atlantis, 2015.
  • [2] G.R. AL-Dayian, A.A. EL-Helbawy, H. Hozaien and E. Gawdat, Estimation of the topp-leone alpha power weibull distribution based on lower record values, Comput. J. Math. Stat. Sci. 3 (1), 145-160, 2024.
  • [3] D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the baik-deift-johansson theorem, Bull. Am. Math. Soc. 36 (4), 413-432, 1999.
  • [4] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, Records, John Wiley & Sons, 2011.
  • [5] R. Arratia, L. Goldstein and L. Gordon, Two moments suffice for poisson approximations: The chen-stein method, Ann. Probab. 17 (1), 9-25, 1989.
  • [6] J. Bunge and C.M. Goldie, Record sequences and their applications, Handbook of Statistics 19, 277-308, 2001.
  • [7] L.H. Chen, L. Goldstein and Q. Shao, Normal approximation by Steins method, Springer Science & Business Media, 2010.
  • [8] A. DasGupta, Asymptotic theory of statistics and probability, Springer, New York, 2008.
  • [9] R. Engelen, P. Tommassen and W. Vervaat, Ignatov’s theorem: A new and short proof, J. Appl. Probab. 26 (A), 229-236, 1988.
  • [10] A.V. Gnedin, Best choice from the planar poisson process, Stoch. Process. Their Appl. 111 (2), 317-354, 2002.
  • [11] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, Cambridge University Press, 2005.
  • [12] E.A. Pekoz, Ignatov’s theorem and correlated record values, Stat. Res. Lett. 43 (2), 107-111, 1999.
  • [13] S. M. Ross, Introduction to Probability Models: Eleventh Edition, Elsevier, 2014.
  • [14] G. Simons, L. Yang and Y. Yao, Doob, ignatov and optional skipping, Ann. Probab. 30 (4), 1933-1958, 2002.
  • [15] R.L. Smith, Statistics for exceptional athletics records, J. R. Stat. Soc. 46 (1), 123-128, 1997.
  • [16] Z. Vidović, J. Nikolić and Z. Perić, Properties of k-record posteriors for the weibull model, Stat. Theory Relat. Fields, 1-11, 2024.
  • [17] Y. C. Yao, On independence of k-record processes: Ignatov¨s theorem revisited, Ann. Probab. 7 (3), 815-821, 1997.
Year 2024, Volume: 53 Issue: 5, 1408 - 1418, 15.10.2024
https://doi.org/10.15672/hujms.1221343

Abstract

References

  • [1] M. Ahsanullah and V.B. Nevzorov, Records via probability theory, Atlantis, 2015.
  • [2] G.R. AL-Dayian, A.A. EL-Helbawy, H. Hozaien and E. Gawdat, Estimation of the topp-leone alpha power weibull distribution based on lower record values, Comput. J. Math. Stat. Sci. 3 (1), 145-160, 2024.
  • [3] D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the baik-deift-johansson theorem, Bull. Am. Math. Soc. 36 (4), 413-432, 1999.
  • [4] B.C. Arnold, N. Balakrishnan and H.N. Nagaraja, Records, John Wiley & Sons, 2011.
  • [5] R. Arratia, L. Goldstein and L. Gordon, Two moments suffice for poisson approximations: The chen-stein method, Ann. Probab. 17 (1), 9-25, 1989.
  • [6] J. Bunge and C.M. Goldie, Record sequences and their applications, Handbook of Statistics 19, 277-308, 2001.
  • [7] L.H. Chen, L. Goldstein and Q. Shao, Normal approximation by Steins method, Springer Science & Business Media, 2010.
  • [8] A. DasGupta, Asymptotic theory of statistics and probability, Springer, New York, 2008.
  • [9] R. Engelen, P. Tommassen and W. Vervaat, Ignatov’s theorem: A new and short proof, J. Appl. Probab. 26 (A), 229-236, 1988.
  • [10] A.V. Gnedin, Best choice from the planar poisson process, Stoch. Process. Their Appl. 111 (2), 317-354, 2002.
  • [11] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, Cambridge University Press, 2005.
  • [12] E.A. Pekoz, Ignatov’s theorem and correlated record values, Stat. Res. Lett. 43 (2), 107-111, 1999.
  • [13] S. M. Ross, Introduction to Probability Models: Eleventh Edition, Elsevier, 2014.
  • [14] G. Simons, L. Yang and Y. Yao, Doob, ignatov and optional skipping, Ann. Probab. 30 (4), 1933-1958, 2002.
  • [15] R.L. Smith, Statistics for exceptional athletics records, J. R. Stat. Soc. 46 (1), 123-128, 1997.
  • [16] Z. Vidović, J. Nikolić and Z. Perić, Properties of k-record posteriors for the weibull model, Stat. Theory Relat. Fields, 1-11, 2024.
  • [17] Y. C. Yao, On independence of k-record processes: Ignatov¨s theorem revisited, Ann. Probab. 7 (3), 815-821, 1997.
There are 17 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Anshui Li 0000-0001-8259-9990

Early Pub Date October 2, 2024
Publication Date October 15, 2024
Published in Issue Year 2024 Volume: 53 Issue: 5

Cite

APA Li, A. (2024). On the recent-$k$-record of discrete random variables. Hacettepe Journal of Mathematics and Statistics, 53(5), 1408-1418. https://doi.org/10.15672/hujms.1221343
AMA Li A. On the recent-$k$-record of discrete random variables. Hacettepe Journal of Mathematics and Statistics. October 2024;53(5):1408-1418. doi:10.15672/hujms.1221343
Chicago Li, Anshui. “On the Recent-$k$-Record of Discrete Random Variables”. Hacettepe Journal of Mathematics and Statistics 53, no. 5 (October 2024): 1408-18. https://doi.org/10.15672/hujms.1221343.
EndNote Li A (October 1, 2024) On the recent-$k$-record of discrete random variables. Hacettepe Journal of Mathematics and Statistics 53 5 1408–1418.
IEEE A. Li, “On the recent-$k$-record of discrete random variables”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, pp. 1408–1418, 2024, doi: 10.15672/hujms.1221343.
ISNAD Li, Anshui. “On the Recent-$k$-Record of Discrete Random Variables”. Hacettepe Journal of Mathematics and Statistics 53/5 (October 2024), 1408-1418. https://doi.org/10.15672/hujms.1221343.
JAMA Li A. On the recent-$k$-record of discrete random variables. Hacettepe Journal of Mathematics and Statistics. 2024;53:1408–1418.
MLA Li, Anshui. “On the Recent-$k$-Record of Discrete Random Variables”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 5, 2024, pp. 1408-1, doi:10.15672/hujms.1221343.
Vancouver Li A. On the recent-$k$-record of discrete random variables. Hacettepe Journal of Mathematics and Statistics. 2024;53(5):1408-1.