An inverse source Cauchy-weighted time-fractional diffusion problem
Year 2024,
Volume: 53 Issue: 5, 1354 - 1367, 15.10.2024
Rahima Atmania
,
Loubna Settara
Abstract
In the present paper, we are concerned with an inverse source Cauchy weighted problem involving a one-dimensional diffusion equation with a time-fractional Riemann-Liouville derivative with $0<\alpha <1$. We start with results on the existence and regularity of the weak solution of the direct problem. Then, we investigate the invertibility of the input-output mapping defined by the additional over-determination integral data in order to the determination of the unknown time-dependent source coefficient.
Supporting Institution
LMA, Laboratory of applied mathemtics
References
- [1] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse
problem for a one-dimensional fractional diffusion equation, Inv. Problems, 25, 2009.
- [2] A. Demir, F. Kanca and E. Ozbilge,Numerical solution and distinguishability in time
fractional parabolic equation, Bound. Value Probl. 142, 2015.
- [3] R. Faizi and R. Atmania, An inverse source problem of a semilinear time-fractional
reaction-diffusion equation, Applicable Analysis, 102 (11), 2939-2959, 2022.
- [4] R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi,Time fractional diffusion: a
discrete random walk approach, Nonlinear Dynamics, 29, 129-143, 2002.
- [5] A. Hasanov, A. Demir and A. Erdem,Monotonicity of input–output mappings in inverse
coefficient and source problems for parabolic equations, J. Math. Anal. Appl.
335, 1434-1451, 2007.
- [6] N. Heymans and I. Podlubny,Physical nterpretation of initial conditions for fractional
differential equations with Riemann-Liouville fractional derivative, Rheologica Acta,
45, 765-771, 2006.
- [7] R. Hilfer,Application of fractional in physics, World scientific publishing company,
Singapore, 2000.
- [8] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional
reaction–diffusion equation, Inv. Problems, 35, 2019.
- [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.
- [10] A. A. Kilbas, J. J. Trujillo and A. A. Voroshilov,Cauchy type problem for diffusionwave
equations with the Riemann-Liouville derivative, Fract. Cal. and Appl. Anal. 8
(4), 403-430, 2005.
- [11] Z. Li, Y. Liu and M. Yamamoto,Initial-boundary value problems for multi-term timefractional
diffusion equations with positive constant coefficients, Appl. Math. and
Comput. 257, 381-397, 2015.
- [12] Yu. Luchko,Some uniqueness and existence results for the initial-boundary-value problems
for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59,
1766-1772, 2010.
- [13] A. Sa’idu and H. Koyunbakan,Inverse fractional Sturm-Liouville problem with eigenparameter
in the boundary conditions, Math. Meth. in the Appl. Sc. 45 (17), 11003-
11012, 2022.
- [14] K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination
for a fractional diffusion equation, Math. Contr. and related fields, 1 (4), 509-518,
2011.
- [15] S. G. Samko, A. A. Kilbas and D. I. Marichev, Fractional Integrals and Derivatives:
Theory and Applications, Gordon and Breach Science Publishers, 1993.
- [16] L. Settara and R. Atmania,An inverse coefficient-source problem for a time-fractional
diffusion equation, Int. J. of Appl. Math. and Stat. 57 (3), 68-78, 2018.
- [17] S. Umarov, On fractional Duhamels principle and its applications, J. D. Equations,
252, 5217-5234, 2012.
- [18] S. Wang, M. Zhang and X. Li, Radial anomalous diffusion in an annulus, Physica A,
390, 3397-3403, 2011.
Year 2024,
Volume: 53 Issue: 5, 1354 - 1367, 15.10.2024
Rahima Atmania
,
Loubna Settara
References
- [1] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse
problem for a one-dimensional fractional diffusion equation, Inv. Problems, 25, 2009.
- [2] A. Demir, F. Kanca and E. Ozbilge,Numerical solution and distinguishability in time
fractional parabolic equation, Bound. Value Probl. 142, 2015.
- [3] R. Faizi and R. Atmania, An inverse source problem of a semilinear time-fractional
reaction-diffusion equation, Applicable Analysis, 102 (11), 2939-2959, 2022.
- [4] R. Gorenflo, F. Mainardi, D. Moretti and P. Paradisi,Time fractional diffusion: a
discrete random walk approach, Nonlinear Dynamics, 29, 129-143, 2002.
- [5] A. Hasanov, A. Demir and A. Erdem,Monotonicity of input–output mappings in inverse
coefficient and source problems for parabolic equations, J. Math. Anal. Appl.
335, 1434-1451, 2007.
- [6] N. Heymans and I. Podlubny,Physical nterpretation of initial conditions for fractional
differential equations with Riemann-Liouville fractional derivative, Rheologica Acta,
45, 765-771, 2006.
- [7] R. Hilfer,Application of fractional in physics, World scientific publishing company,
Singapore, 2000.
- [8] B. Kaltenbacher and W. Rundell, On an inverse potential problem for a fractional
reaction–diffusion equation, Inv. Problems, 35, 2019.
- [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,Theory and Applications of Fractional
Differential Equations, Elsevier, Amsterdam, 2006.
- [10] A. A. Kilbas, J. J. Trujillo and A. A. Voroshilov,Cauchy type problem for diffusionwave
equations with the Riemann-Liouville derivative, Fract. Cal. and Appl. Anal. 8
(4), 403-430, 2005.
- [11] Z. Li, Y. Liu and M. Yamamoto,Initial-boundary value problems for multi-term timefractional
diffusion equations with positive constant coefficients, Appl. Math. and
Comput. 257, 381-397, 2015.
- [12] Yu. Luchko,Some uniqueness and existence results for the initial-boundary-value problems
for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59,
1766-1772, 2010.
- [13] A. Sa’idu and H. Koyunbakan,Inverse fractional Sturm-Liouville problem with eigenparameter
in the boundary conditions, Math. Meth. in the Appl. Sc. 45 (17), 11003-
11012, 2022.
- [14] K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination
for a fractional diffusion equation, Math. Contr. and related fields, 1 (4), 509-518,
2011.
- [15] S. G. Samko, A. A. Kilbas and D. I. Marichev, Fractional Integrals and Derivatives:
Theory and Applications, Gordon and Breach Science Publishers, 1993.
- [16] L. Settara and R. Atmania,An inverse coefficient-source problem for a time-fractional
diffusion equation, Int. J. of Appl. Math. and Stat. 57 (3), 68-78, 2018.
- [17] S. Umarov, On fractional Duhamels principle and its applications, J. D. Equations,
252, 5217-5234, 2012.
- [18] S. Wang, M. Zhang and X. Li, Radial anomalous diffusion in an annulus, Physica A,
390, 3397-3403, 2011.