Research Article
BibTex RIS Cite

Reduced-Order modeling for Heston stochastic volatility model

Year 2024, Volume: 53 Issue: 6, 1515 - 1528, 28.12.2024
https://doi.org/10.15672/hujms.1066143

Abstract

In this paper, we compare the intrusive proper orthogonal decomposition (POD) with Galerkin projection and the data-driven dynamic mode decomposition (DMD), for Heston's option pricing model. The full order model is obtained by discontinuous Galerkin discretization in space and backward Euler in time. Numerical results for butterfly spread, European and digital call options reveal that in general DMD requires more modes than the POD modes for the same level of accuracy. However, the speed-up factors are much higher for DMD than POD due to the non-intrusive nature of the DMD.

References

  • [1] L. W. Ballestra and G. Pacelli, Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach, J. Econ. Dyn. Control, 37 (6), 1142 – 1167, 2013.
  • [2] M. Balajewicz and J. Toivanen, Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-diffusion Models, Procedia Computer Science, 80, 734 – 743, 2016.
  • [3] M. Budisic, Matlab toolbox for Koopman mode decomposition Technical report, Department of Mathematics, University of Wisconsin - Madison, 2015.
  • [4] O. Burkovska, B. Haasdonk, J. Salomon and B. Wohlmuth, Reduced basis methods for pricing options with the Black–Scholes and Heston models, SIAM J. Financ. Math., 6 (1), 685–712, 2015.
  • [5] J. Cen, A. Khan, D. Motreanu and S. Zeng. Inverse problems for generalized quasivariational inequalities with application to elliptic mixed boundary value systems, Inverse Problems, 38, 065006 (28pp), 2022.
  • [6] K. K. Chen, J. H. Tu and C. W. Rowley. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22 (6), 887– 915, 2012.
  • [7] R. Cont, N. Lantos and O. Pironneau, A reduced basis for option pricing SIAM J. Fin. Math. 2 (1), 287–316, 2011.
  • [8] L. X. Cui and C. Long, Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market, Phys. A, 461, 498 – 508, 2016.
  • [9] B. Düring, M. Fournié and C. Heuer, High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids, J. Comput. Appl. Math., 271, 247 – 266, 2014.
  • [10] R. England, The use of numerical methods in solving pricing problems for exotic financial derivatives with a stochastic volatility. PhD thesis, M. Sc. Thesis, University of Reading, 2006.
  • [11] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (2), 327–343, 1993.
  • [12] K. J. In’T Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Model. 7 (2), 303–320, 2010.
  • [13] M. R. Jovanovi’c, P. J. Schmid and J. W. Nichols. Sparsity-promoting dynamic mode decomposition, Physics of Fluids, 26 (2), 2014.
  • [14] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat. Acad. Sci. 17 (5), 315–318, 1931.
  • [15] S. Kozpınar, M. Uzunca and B. Karasözen, Option pricing under Heston stochastic volatility model using discontinuous Galerkin finite elements, Math. Comput. Simulation, 177, 568-58, 2020.
  • [16] K. Kunish and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems Numerische Mathematik, 90 (1),117–148, 2001.
  • [17] V. L. Lazar, Pricing digital call option in the Heston stochastic volatility model, Studia Univ. Babeş-Bolyai Math. 48 (3), 83–92, 2003.
  • [18] A. Lipton, Mathematical methods for foreign exchange: A financial engineer’s approach, World Scientific, 2001.
  • [19] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trading strategies, Quantitative Finance, 16 (11), 1643–1655, 2016.
  • [20] A. Mayerhofen and K. Urban, A reduced basis method for parabolic partial differential equations with parameter functions and applications to option pricing, J. Comput. Finance, 20 (4), 71-106, 2016.
  • [21] B. Peherstorfer, P. Gómez and H. M. Bungartz, Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation, Adv. Comput. Math. 41 (5), 1365–1389, 2015.
  • [22] O. Pironneau, Pricing futures by deterministic methods, Acta Numerica, 21, 577–671, 2012.
  • [23] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations, Theory and implementation, SIAM, 2008.
  • [24] E. W. Sachs and M. Schu. A priori error estimates for reduced order models in finance, ESAIM Math. Model. Numer. Anal. 47 (3), 449–469, 2013.
  • [25] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656, 5–28, 2010.
  • [26] D. Y. Tangman, A. Gopaul and M. Bhuruth, Numerical pricing of options using highorder compact finite difference schemes, J. Comput. Appl. Math. 218 (2), 270–280, 2008.
  • [27] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz. On dynamic mode decomposition: theory and applications, J. Comput. Dyn. 1 (2), 391– 421, 2014.
  • [28] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, Lecture Notes, University of Konstanz, 2013.
  • [29] G. Winkler, T. Apel and U. Wystup, Valuation of options in Heston’s stochastic volatility model using finite element methods, Foreign Exchange Risk, 283–303, 2001.
  • [30] S. Zeng, S. Migórski and A. Khan, Nonlinear quasi-hemivariational inequalities: existence and optimal control, SIAM J. Control Optim. 59 (2), 1246–1274, 2021.
  • [31] S. Zeng, S. Migórski and Z. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31 (4), 2829–2862, 2021.
Year 2024, Volume: 53 Issue: 6, 1515 - 1528, 28.12.2024
https://doi.org/10.15672/hujms.1066143

Abstract

References

  • [1] L. W. Ballestra and G. Pacelli, Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach, J. Econ. Dyn. Control, 37 (6), 1142 – 1167, 2013.
  • [2] M. Balajewicz and J. Toivanen, Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-diffusion Models, Procedia Computer Science, 80, 734 – 743, 2016.
  • [3] M. Budisic, Matlab toolbox for Koopman mode decomposition Technical report, Department of Mathematics, University of Wisconsin - Madison, 2015.
  • [4] O. Burkovska, B. Haasdonk, J. Salomon and B. Wohlmuth, Reduced basis methods for pricing options with the Black–Scholes and Heston models, SIAM J. Financ. Math., 6 (1), 685–712, 2015.
  • [5] J. Cen, A. Khan, D. Motreanu and S. Zeng. Inverse problems for generalized quasivariational inequalities with application to elliptic mixed boundary value systems, Inverse Problems, 38, 065006 (28pp), 2022.
  • [6] K. K. Chen, J. H. Tu and C. W. Rowley. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22 (6), 887– 915, 2012.
  • [7] R. Cont, N. Lantos and O. Pironneau, A reduced basis for option pricing SIAM J. Fin. Math. 2 (1), 287–316, 2011.
  • [8] L. X. Cui and C. Long, Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market, Phys. A, 461, 498 – 508, 2016.
  • [9] B. Düring, M. Fournié and C. Heuer, High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids, J. Comput. Appl. Math., 271, 247 – 266, 2014.
  • [10] R. England, The use of numerical methods in solving pricing problems for exotic financial derivatives with a stochastic volatility. PhD thesis, M. Sc. Thesis, University of Reading, 2006.
  • [11] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6 (2), 327–343, 1993.
  • [12] K. J. In’T Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Model. 7 (2), 303–320, 2010.
  • [13] M. R. Jovanovi’c, P. J. Schmid and J. W. Nichols. Sparsity-promoting dynamic mode decomposition, Physics of Fluids, 26 (2), 2014.
  • [14] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat. Acad. Sci. 17 (5), 315–318, 1931.
  • [15] S. Kozpınar, M. Uzunca and B. Karasözen, Option pricing under Heston stochastic volatility model using discontinuous Galerkin finite elements, Math. Comput. Simulation, 177, 568-58, 2020.
  • [16] K. Kunish and S. Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems Numerische Mathematik, 90 (1),117–148, 2001.
  • [17] V. L. Lazar, Pricing digital call option in the Heston stochastic volatility model, Studia Univ. Babeş-Bolyai Math. 48 (3), 83–92, 2003.
  • [18] A. Lipton, Mathematical methods for foreign exchange: A financial engineer’s approach, World Scientific, 2001.
  • [19] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trading strategies, Quantitative Finance, 16 (11), 1643–1655, 2016.
  • [20] A. Mayerhofen and K. Urban, A reduced basis method for parabolic partial differential equations with parameter functions and applications to option pricing, J. Comput. Finance, 20 (4), 71-106, 2016.
  • [21] B. Peherstorfer, P. Gómez and H. M. Bungartz, Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation, Adv. Comput. Math. 41 (5), 1365–1389, 2015.
  • [22] O. Pironneau, Pricing futures by deterministic methods, Acta Numerica, 21, 577–671, 2012.
  • [23] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations, Theory and implementation, SIAM, 2008.
  • [24] E. W. Sachs and M. Schu. A priori error estimates for reduced order models in finance, ESAIM Math. Model. Numer. Anal. 47 (3), 449–469, 2013.
  • [25] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech. 656, 5–28, 2010.
  • [26] D. Y. Tangman, A. Gopaul and M. Bhuruth, Numerical pricing of options using highorder compact finite difference schemes, J. Comput. Appl. Math. 218 (2), 270–280, 2008.
  • [27] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz. On dynamic mode decomposition: theory and applications, J. Comput. Dyn. 1 (2), 391– 421, 2014.
  • [28] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, Lecture Notes, University of Konstanz, 2013.
  • [29] G. Winkler, T. Apel and U. Wystup, Valuation of options in Heston’s stochastic volatility model using finite element methods, Foreign Exchange Risk, 283–303, 2001.
  • [30] S. Zeng, S. Migórski and A. Khan, Nonlinear quasi-hemivariational inequalities: existence and optimal control, SIAM J. Control Optim. 59 (2), 1246–1274, 2021.
  • [31] S. Zeng, S. Migórski and Z. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim. 31 (4), 2829–2862, 2021.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sinem Kozpınar 0000-0002-8136-0328

Murat Uzunca 0000-0001-5262-063X

Bülent Karasözen 0000-0003-1037-5431

Early Pub Date January 10, 2024
Publication Date December 28, 2024
Published in Issue Year 2024 Volume: 53 Issue: 6

Cite

APA Kozpınar, S., Uzunca, M., & Karasözen, B. (2024). Reduced-Order modeling for Heston stochastic volatility model. Hacettepe Journal of Mathematics and Statistics, 53(6), 1515-1528. https://doi.org/10.15672/hujms.1066143
AMA Kozpınar S, Uzunca M, Karasözen B. Reduced-Order modeling for Heston stochastic volatility model. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1515-1528. doi:10.15672/hujms.1066143
Chicago Kozpınar, Sinem, Murat Uzunca, and Bülent Karasözen. “Reduced-Order Modeling for Heston Stochastic Volatility Model”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1515-28. https://doi.org/10.15672/hujms.1066143.
EndNote Kozpınar S, Uzunca M, Karasözen B (December 1, 2024) Reduced-Order modeling for Heston stochastic volatility model. Hacettepe Journal of Mathematics and Statistics 53 6 1515–1528.
IEEE S. Kozpınar, M. Uzunca, and B. Karasözen, “Reduced-Order modeling for Heston stochastic volatility model”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1515–1528, 2024, doi: 10.15672/hujms.1066143.
ISNAD Kozpınar, Sinem et al. “Reduced-Order Modeling for Heston Stochastic Volatility Model”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1515-1528. https://doi.org/10.15672/hujms.1066143.
JAMA Kozpınar S, Uzunca M, Karasözen B. Reduced-Order modeling for Heston stochastic volatility model. Hacettepe Journal of Mathematics and Statistics. 2024;53:1515–1528.
MLA Kozpınar, Sinem et al. “Reduced-Order Modeling for Heston Stochastic Volatility Model”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1515-28, doi:10.15672/hujms.1066143.
Vancouver Kozpınar S, Uzunca M, Karasözen B. Reduced-Order modeling for Heston stochastic volatility model. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1515-28.