Reduced-Order modeling for Heston stochastic volatility model
Year 2024,
Volume: 53 Issue: 6, 1515 - 1528, 28.12.2024
Sinem Kozpınar
,
Murat Uzunca
,
Bülent Karasözen
Abstract
In this paper, we compare the intrusive proper orthogonal decomposition (POD) with Galerkin projection and the data-driven dynamic mode decomposition (DMD), for Heston's option pricing model. The full order model is obtained by discontinuous Galerkin discretization in space and backward Euler in time. Numerical results for butterfly spread, European and digital call options reveal that in general DMD requires more modes than the POD modes for the same level of accuracy. However, the speed-up factors are much higher for DMD than POD due to the non-intrusive nature of the DMD.
References
- [1] L. W. Ballestra and G. Pacelli, Pricing European and American options with two
stochastic factors: A highly efficient radial basis function approach, J. Econ. Dyn.
Control, 37 (6), 1142 – 1167, 2013.
- [2] M. Balajewicz and J. Toivanen, Reduced Order Models for Pricing American Options
under Stochastic Volatility and Jump-diffusion Models, Procedia Computer Science,
80, 734 – 743, 2016.
- [3] M. Budisic, Matlab toolbox for Koopman mode decomposition Technical report, Department
of Mathematics, University of Wisconsin - Madison, 2015.
- [4] O. Burkovska, B. Haasdonk, J. Salomon and B. Wohlmuth, Reduced basis methods for
pricing options with the Black–Scholes and Heston models, SIAM J. Financ. Math.,
6 (1), 685–712, 2015.
- [5] J. Cen, A. Khan, D. Motreanu and S. Zeng. Inverse problems for generalized quasivariational
inequalities with application to elliptic mixed boundary value systems, Inverse
Problems, 38, 065006 (28pp), 2022.
- [6] K. K. Chen, J. H. Tu and C. W. Rowley. Variants of dynamic mode decomposition:
Boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22 (6), 887–
915, 2012.
- [7] R. Cont, N. Lantos and O. Pironneau, A reduced basis for option pricing SIAM J.
Fin. Math. 2 (1), 287–316, 2011.
- [8] L. X. Cui and C. Long, Trading strategy based on dynamic mode decomposition: Tested
in Chinese stock market, Phys. A, 461, 498 – 508, 2016.
- [9] B. Düring, M. Fournié and C. Heuer, High-order compact finite difference schemes
for option pricing in stochastic volatility models on non-uniform grids, J. Comput.
Appl. Math., 271, 247 – 266, 2014.
- [10] R. England, The use of numerical methods in solving pricing problems for exotic
financial derivatives with a stochastic volatility. PhD thesis, M. Sc. Thesis, University
of Reading, 2006.
- [11] S. L. Heston, A closed-form solution for options with stochastic volatility with applications
to bond and currency options, Review of Financial Studies, 6 (2), 327–343,
1993.
- [12] K. J. In’T Hout and S. Foulon, ADI finite difference schemes for option pricing in
the Heston model with correlation, Int. J. Numer. Anal. Model. 7 (2), 303–320, 2010.
- [13] M. R. Jovanovi’c, P. J. Schmid and J. W. Nichols. Sparsity-promoting dynamic mode
decomposition, Physics of Fluids, 26 (2), 2014.
- [14] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat.
Acad. Sci. 17 (5), 315–318, 1931.
- [15] S. Kozpınar, M. Uzunca and B. Karasözen, Option pricing under Heston stochastic
volatility model using discontinuous Galerkin finite elements, Math. Comput. Simulation,
177, 568-58, 2020.
- [16] K. Kunish and S. Volkwein. Galerkin proper orthogonal decomposition methods for
parabolic problems Numerische Mathematik, 90 (1),117–148, 2001.
- [17] V. L. Lazar, Pricing digital call option in the Heston stochastic volatility model, Studia
Univ. Babeş-Bolyai Math. 48 (3), 83–92, 2003.
- [18] A. Lipton, Mathematical methods for foreign exchange: A financial engineer’s approach,
World Scientific, 2001.
- [19] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trading strategies,
Quantitative Finance, 16 (11), 1643–1655, 2016.
- [20] A. Mayerhofen and K. Urban, A reduced basis method for parabolic partial differential
equations with parameter functions and applications to option pricing, J. Comput.
Finance, 20 (4), 71-106, 2016.
- [21] B. Peherstorfer, P. Gómez and H. M. Bungartz, Reduced models for sparse grid discretizations
of the multi-asset Black-Scholes equation, Adv. Comput. Math. 41 (5),
1365–1389, 2015.
- [22] O. Pironneau, Pricing futures by deterministic methods, Acta Numerica, 21, 577–671,
2012.
- [23] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations,
Theory and implementation, SIAM, 2008.
- [24] E. W. Sachs and M. Schu. A priori error estimates for reduced order models in finance,
ESAIM Math. Model. Numer. Anal. 47 (3), 449–469, 2013.
- [25] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J.
Fluid Mech. 656, 5–28, 2010.
- [26] D. Y. Tangman, A. Gopaul and M. Bhuruth, Numerical pricing of options using highorder
compact finite difference schemes, J. Comput. Appl. Math. 218 (2), 270–280,
2008.
- [27] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz. On
dynamic mode decomposition: theory and applications, J. Comput. Dyn. 1 (2), 391–
421, 2014.
- [28] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, Lecture Notes,
University of Konstanz, 2013.
- [29] G. Winkler, T. Apel and U. Wystup, Valuation of options in Heston’s stochastic
volatility model using finite element methods, Foreign Exchange Risk, 283–303, 2001.
- [30] S. Zeng, S. Migórski and A. Khan, Nonlinear quasi-hemivariational inequalities: existence
and optimal control, SIAM J. Control Optim. 59 (2), 1246–1274, 2021.
- [31] S. Zeng, S. Migórski and Z. Liu, Well-posedness, optimal control, and sensitivity
analysis for a class of differential variational-hemivariational inequalities, SIAM J.
Optim. 31 (4), 2829–2862, 2021.
Year 2024,
Volume: 53 Issue: 6, 1515 - 1528, 28.12.2024
Sinem Kozpınar
,
Murat Uzunca
,
Bülent Karasözen
References
- [1] L. W. Ballestra and G. Pacelli, Pricing European and American options with two
stochastic factors: A highly efficient radial basis function approach, J. Econ. Dyn.
Control, 37 (6), 1142 – 1167, 2013.
- [2] M. Balajewicz and J. Toivanen, Reduced Order Models for Pricing American Options
under Stochastic Volatility and Jump-diffusion Models, Procedia Computer Science,
80, 734 – 743, 2016.
- [3] M. Budisic, Matlab toolbox for Koopman mode decomposition Technical report, Department
of Mathematics, University of Wisconsin - Madison, 2015.
- [4] O. Burkovska, B. Haasdonk, J. Salomon and B. Wohlmuth, Reduced basis methods for
pricing options with the Black–Scholes and Heston models, SIAM J. Financ. Math.,
6 (1), 685–712, 2015.
- [5] J. Cen, A. Khan, D. Motreanu and S. Zeng. Inverse problems for generalized quasivariational
inequalities with application to elliptic mixed boundary value systems, Inverse
Problems, 38, 065006 (28pp), 2022.
- [6] K. K. Chen, J. H. Tu and C. W. Rowley. Variants of dynamic mode decomposition:
Boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22 (6), 887–
915, 2012.
- [7] R. Cont, N. Lantos and O. Pironneau, A reduced basis for option pricing SIAM J.
Fin. Math. 2 (1), 287–316, 2011.
- [8] L. X. Cui and C. Long, Trading strategy based on dynamic mode decomposition: Tested
in Chinese stock market, Phys. A, 461, 498 – 508, 2016.
- [9] B. Düring, M. Fournié and C. Heuer, High-order compact finite difference schemes
for option pricing in stochastic volatility models on non-uniform grids, J. Comput.
Appl. Math., 271, 247 – 266, 2014.
- [10] R. England, The use of numerical methods in solving pricing problems for exotic
financial derivatives with a stochastic volatility. PhD thesis, M. Sc. Thesis, University
of Reading, 2006.
- [11] S. L. Heston, A closed-form solution for options with stochastic volatility with applications
to bond and currency options, Review of Financial Studies, 6 (2), 327–343,
1993.
- [12] K. J. In’T Hout and S. Foulon, ADI finite difference schemes for option pricing in
the Heston model with correlation, Int. J. Numer. Anal. Model. 7 (2), 303–320, 2010.
- [13] M. R. Jovanovi’c, P. J. Schmid and J. W. Nichols. Sparsity-promoting dynamic mode
decomposition, Physics of Fluids, 26 (2), 2014.
- [14] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Nat.
Acad. Sci. 17 (5), 315–318, 1931.
- [15] S. Kozpınar, M. Uzunca and B. Karasözen, Option pricing under Heston stochastic
volatility model using discontinuous Galerkin finite elements, Math. Comput. Simulation,
177, 568-58, 2020.
- [16] K. Kunish and S. Volkwein. Galerkin proper orthogonal decomposition methods for
parabolic problems Numerische Mathematik, 90 (1),117–148, 2001.
- [17] V. L. Lazar, Pricing digital call option in the Heston stochastic volatility model, Studia
Univ. Babeş-Bolyai Math. 48 (3), 83–92, 2003.
- [18] A. Lipton, Mathematical methods for foreign exchange: A financial engineer’s approach,
World Scientific, 2001.
- [19] J. Mann and J. N. Kutz. Dynamic mode decomposition for financial trading strategies,
Quantitative Finance, 16 (11), 1643–1655, 2016.
- [20] A. Mayerhofen and K. Urban, A reduced basis method for parabolic partial differential
equations with parameter functions and applications to option pricing, J. Comput.
Finance, 20 (4), 71-106, 2016.
- [21] B. Peherstorfer, P. Gómez and H. M. Bungartz, Reduced models for sparse grid discretizations
of the multi-asset Black-Scholes equation, Adv. Comput. Math. 41 (5),
1365–1389, 2015.
- [22] O. Pironneau, Pricing futures by deterministic methods, Acta Numerica, 21, 577–671,
2012.
- [23] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations,
Theory and implementation, SIAM, 2008.
- [24] E. W. Sachs and M. Schu. A priori error estimates for reduced order models in finance,
ESAIM Math. Model. Numer. Anal. 47 (3), 449–469, 2013.
- [25] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J.
Fluid Mech. 656, 5–28, 2010.
- [26] D. Y. Tangman, A. Gopaul and M. Bhuruth, Numerical pricing of options using highorder
compact finite difference schemes, J. Comput. Appl. Math. 218 (2), 270–280,
2008.
- [27] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz. On
dynamic mode decomposition: theory and applications, J. Comput. Dyn. 1 (2), 391–
421, 2014.
- [28] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, Lecture Notes,
University of Konstanz, 2013.
- [29] G. Winkler, T. Apel and U. Wystup, Valuation of options in Heston’s stochastic
volatility model using finite element methods, Foreign Exchange Risk, 283–303, 2001.
- [30] S. Zeng, S. Migórski and A. Khan, Nonlinear quasi-hemivariational inequalities: existence
and optimal control, SIAM J. Control Optim. 59 (2), 1246–1274, 2021.
- [31] S. Zeng, S. Migórski and Z. Liu, Well-posedness, optimal control, and sensitivity
analysis for a class of differential variational-hemivariational inequalities, SIAM J.
Optim. 31 (4), 2829–2862, 2021.