Research Article
BibTex RIS Cite

Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems

Year 2024, Volume: 53 Issue: 6, 1588 - 1606, 28.12.2024
https://doi.org/10.15672/hujms.1302743

Abstract

We present the novel concept of graphical bipolar metric-type space in this article, which combines the notions of graph theory with fixed point theory. We prove that every bipolar metric space is a graphical bipolar metric space but the converse is not true in general. Various concepts like covariant mapping, contravariant mapping, and Cauchy bisequence are also discussed within the context of graphical bipolar metric-type spaces. Furthermore, in this study, we show that fixed point results exist in graphical structures of bipolar metric spaces and a series of examples are provided to support the main results within the realm of the graph structure.

Supporting Institution

No

Project Number

No

Thanks

No

References

  • [1] H. Ahmad, M. Younis and M. E. Köksal, Double controlled partial metric type spaces and convergence results, J. Math. 2021, 7008737, 2021.
  • [2] N. Chuensupantharat, P. Kumam, V. Chauhan, D. Singh and R. Menon, Graphic contraction mappings via graphical b-metric spaces with applications, Bull. Malays. Math. Sci. Soc. 42, 3149–3165, 2019.
  • [3] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45, 267–273, 1974.
  • [4] S. Çetin and U. Gürdal, Characterization of bipolar ultrametric spaces and fixed point theorems, Hacet. J. Math. Stat. 52 (1), 185-196, 2023.
  • [5] A.K. Dubey, U. Mishra and W.H. Lim, Some new fixed point theorems for generalized contraction involving rational expressions in complex valued b−metric spaces, Nonlinear Funct. Anal. Appl. 24 (3), 477–483, 2019.
  • [6] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl. 8 (6), 1005–1013, 2015.
  • [7] A. F. de Hierro and N. Shahzad, From graphical metric spaces to fixed point theory in binary related distance spaces, Filomat, 31, 3209–3231, 2017.
  • [8] N. Hussain, M. Arshad and A. Shoaib, Common fixed point results for $\alpha $-$\psi $- contractions on a metric space endowed with graph, J. Inequal. Appl. (1), 136, 2014.
  • [9] N. Hussain, J. Ahmad and M.A. Kutbi MA, Fixed point theorems for generalized Mizoguchi-Takahashi graphic contractions, J. Funct. Spaces 2016, 6514920, 2016.
  • [10] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136, 1359–1373, 2008.
  • [11] G. N. V. Kishore, R. P. Agarwal, B. Srinuvasa Rao and R. V. N. Srinuvasa Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl. 2018, 21, 2018.
  • [12] Z. Mostefaoui, M. Bousselsal and J.K. Kim, Some results in fixed point theory concerning rectangular b−metric spaces, Nonlinear Funct. Anal. Appl., 24 (1), 49–59, 2019.
  • [13] A. Mutlu and U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl. 9 (9), 5362-5373, 2016.
  • [14] A. Mutlu, K. Ozkan and U. Gurdal, Coupled fixed point theorems on bipolar metric spaces, European journal of pure and applied Mathematics, 10 (4), 655-667, 2017.
  • [15] A. Mutlu, K. Ozkan and U. Gurdal, Fixed point theorems for multivaled mappings on bipolar metric spaces, Fixed Point Theory, 21 (1), 271-280, 2020.
  • [16] S. Radenović, K. Zoto, N. Dedović, V. Šešum-Cavic and A.H. Ansari, Bhaskar-Guo- Lakshmikantam-Ćirić type results via new functions with applications to integral equations, Applied Mathematics and Computation, 357,75–87, 2019.
  • [17] S. Radenović, T. Došenović, T. Aleksić-Lampert and Z. Golubović, A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations, Appl. Math. Comput. 273, 155–164, 2016.
  • [18] N. Saleem, H. Ahmad, H. Aydi and Y. Ulrich Gaba, On Some Coincidence Best Proximity Point Results, Journal of Mathematics, 2021, 8005469, 2021.
  • [19] S. Shukla, S. Radenović and C. Vetro, Graphical metric space: a generalized setting in fixed point theory, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 111, 641–655, 2017.
  • [20] D. Singh, V. Chauhan and I. Altun, Common fixed point of a power graphic $(F, \psi)$- contraction pair on partial b−metric spaces with application, Nonlinear analysis: Modelling and control, 22 (5), 662–678, 2017.
  • [21] D. Singh, V, Joshi and J.K. Kim, Existence of solution to Bessel-type boundary value problem Viam G–l cyclic F−contractive mapping with graphical verification, Nonlinear Funct. Anal. Appl. 23 (2), 205–224, 2018.
  • [22] M. Younis, D. Singh and A. Goyal, A novel approach of graphical rectangular b−metric spaces with an application to the vibrations of a vertical heavy hanging cable, J. Fixed Point Theory Appl. 21, 33, 2019.
  • [23] M. Younis and D. Bahuguna, A unique approach to graph-based metric spaces with an application to rocket ascension, Comp. Appl. Math. 42, 44, 2023.
  • [24] M. Younis, D. Singh, M. Asadi and V. Joshi, Results on contractions of Reich type in graphical b−metric spaces with applications, Filomat, 33 (17), 5723–5735, 2019.
  • [25] M. Younis, D. Singh, D. Gopal, A. Goyal and M. S. Rathore, On applications of generalized F−contraction to differential equations, Nonlinear Funct. Anal. Appl. 24 (1), 155–174, 2019.
  • [26] M. Younis, D. Singh, I. Altun and V. Chauhan, Graphical structure of extended b−metric spaces: an application to the transverse oscillations of a homogeneous bar, Int. J. Nonlinear Sci. Numer. Simul. 23 (7-8), 1239–1252, 2021.
  • [27] G. N. V. Kishore, K. P. R. Rao, H. Isık, B. Srinuvasa Rao and A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl. 12 (1), 1-15, 2021.
Year 2024, Volume: 53 Issue: 6, 1588 - 1606, 28.12.2024
https://doi.org/10.15672/hujms.1302743

Abstract

Project Number

No

References

  • [1] H. Ahmad, M. Younis and M. E. Köksal, Double controlled partial metric type spaces and convergence results, J. Math. 2021, 7008737, 2021.
  • [2] N. Chuensupantharat, P. Kumam, V. Chauhan, D. Singh and R. Menon, Graphic contraction mappings via graphical b-metric spaces with applications, Bull. Malays. Math. Sci. Soc. 42, 3149–3165, 2019.
  • [3] L. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45, 267–273, 1974.
  • [4] S. Çetin and U. Gürdal, Characterization of bipolar ultrametric spaces and fixed point theorems, Hacet. J. Math. Stat. 52 (1), 185-196, 2023.
  • [5] A.K. Dubey, U. Mishra and W.H. Lim, Some new fixed point theorems for generalized contraction involving rational expressions in complex valued b−metric spaces, Nonlinear Funct. Anal. Appl. 24 (3), 477–483, 2019.
  • [6] R. George, S. Radenovic, K.P. Reshma and S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl. 8 (6), 1005–1013, 2015.
  • [7] A. F. de Hierro and N. Shahzad, From graphical metric spaces to fixed point theory in binary related distance spaces, Filomat, 31, 3209–3231, 2017.
  • [8] N. Hussain, M. Arshad and A. Shoaib, Common fixed point results for $\alpha $-$\psi $- contractions on a metric space endowed with graph, J. Inequal. Appl. (1), 136, 2014.
  • [9] N. Hussain, J. Ahmad and M.A. Kutbi MA, Fixed point theorems for generalized Mizoguchi-Takahashi graphic contractions, J. Funct. Spaces 2016, 6514920, 2016.
  • [10] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136, 1359–1373, 2008.
  • [11] G. N. V. Kishore, R. P. Agarwal, B. Srinuvasa Rao and R. V. N. Srinuvasa Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl. 2018, 21, 2018.
  • [12] Z. Mostefaoui, M. Bousselsal and J.K. Kim, Some results in fixed point theory concerning rectangular b−metric spaces, Nonlinear Funct. Anal. Appl., 24 (1), 49–59, 2019.
  • [13] A. Mutlu and U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl. 9 (9), 5362-5373, 2016.
  • [14] A. Mutlu, K. Ozkan and U. Gurdal, Coupled fixed point theorems on bipolar metric spaces, European journal of pure and applied Mathematics, 10 (4), 655-667, 2017.
  • [15] A. Mutlu, K. Ozkan and U. Gurdal, Fixed point theorems for multivaled mappings on bipolar metric spaces, Fixed Point Theory, 21 (1), 271-280, 2020.
  • [16] S. Radenović, K. Zoto, N. Dedović, V. Šešum-Cavic and A.H. Ansari, Bhaskar-Guo- Lakshmikantam-Ćirić type results via new functions with applications to integral equations, Applied Mathematics and Computation, 357,75–87, 2019.
  • [17] S. Radenović, T. Došenović, T. Aleksić-Lampert and Z. Golubović, A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations, Appl. Math. Comput. 273, 155–164, 2016.
  • [18] N. Saleem, H. Ahmad, H. Aydi and Y. Ulrich Gaba, On Some Coincidence Best Proximity Point Results, Journal of Mathematics, 2021, 8005469, 2021.
  • [19] S. Shukla, S. Radenović and C. Vetro, Graphical metric space: a generalized setting in fixed point theory, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 111, 641–655, 2017.
  • [20] D. Singh, V. Chauhan and I. Altun, Common fixed point of a power graphic $(F, \psi)$- contraction pair on partial b−metric spaces with application, Nonlinear analysis: Modelling and control, 22 (5), 662–678, 2017.
  • [21] D. Singh, V, Joshi and J.K. Kim, Existence of solution to Bessel-type boundary value problem Viam G–l cyclic F−contractive mapping with graphical verification, Nonlinear Funct. Anal. Appl. 23 (2), 205–224, 2018.
  • [22] M. Younis, D. Singh and A. Goyal, A novel approach of graphical rectangular b−metric spaces with an application to the vibrations of a vertical heavy hanging cable, J. Fixed Point Theory Appl. 21, 33, 2019.
  • [23] M. Younis and D. Bahuguna, A unique approach to graph-based metric spaces with an application to rocket ascension, Comp. Appl. Math. 42, 44, 2023.
  • [24] M. Younis, D. Singh, M. Asadi and V. Joshi, Results on contractions of Reich type in graphical b−metric spaces with applications, Filomat, 33 (17), 5723–5735, 2019.
  • [25] M. Younis, D. Singh, D. Gopal, A. Goyal and M. S. Rathore, On applications of generalized F−contraction to differential equations, Nonlinear Funct. Anal. Appl. 24 (1), 155–174, 2019.
  • [26] M. Younis, D. Singh, I. Altun and V. Chauhan, Graphical structure of extended b−metric spaces: an application to the transverse oscillations of a homogeneous bar, Int. J. Nonlinear Sci. Numer. Simul. 23 (7-8), 1239–1252, 2021.
  • [27] G. N. V. Kishore, K. P. R. Rao, H. Isık, B. Srinuvasa Rao and A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl. 12 (1), 1-15, 2021.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mudasir Younıs 0000-0001-5499-4272

Ali Mutlu 0000-0003-0008-2432

Haroon Ahmad 0000-0002-3907-0554

Project Number No
Early Pub Date April 14, 2024
Publication Date December 28, 2024
Published in Issue Year 2024 Volume: 53 Issue: 6

Cite

APA Younıs, M., Mutlu, A., & Ahmad, H. (2024). Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems. Hacettepe Journal of Mathematics and Statistics, 53(6), 1588-1606. https://doi.org/10.15672/hujms.1302743
AMA Younıs M, Mutlu A, Ahmad H. Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1588-1606. doi:10.15672/hujms.1302743
Chicago Younıs, Mudasir, Ali Mutlu, and Haroon Ahmad. “Ćirić Contraction With Graphical Structure of Bipolar Metric Spaces and Related Fixed Point Theorems”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1588-1606. https://doi.org/10.15672/hujms.1302743.
EndNote Younıs M, Mutlu A, Ahmad H (December 1, 2024) Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems. Hacettepe Journal of Mathematics and Statistics 53 6 1588–1606.
IEEE M. Younıs, A. Mutlu, and H. Ahmad, “Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1588–1606, 2024, doi: 10.15672/hujms.1302743.
ISNAD Younıs, Mudasir et al. “Ćirić Contraction With Graphical Structure of Bipolar Metric Spaces and Related Fixed Point Theorems”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1588-1606. https://doi.org/10.15672/hujms.1302743.
JAMA Younıs M, Mutlu A, Ahmad H. Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems. Hacettepe Journal of Mathematics and Statistics. 2024;53:1588–1606.
MLA Younıs, Mudasir et al. “Ćirić Contraction With Graphical Structure of Bipolar Metric Spaces and Related Fixed Point Theorems”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1588-06, doi:10.15672/hujms.1302743.
Vancouver Younıs M, Mutlu A, Ahmad H. Ćirić contraction with graphical structure of bipolar metric spaces and related fixed point theorems. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1588-606.